Automatic 3D Industrial Point Cloud Modeling and Recognition

Guan Pang, Rongqi Qiu, Jing Huang, Suya You, Ulrich Neumann

Computer Graphics and Immersive Technologies (CGIT) Lab, University of Southern California

Goal
Automatic modeling and recognition of 3D industrial site point clouds

Algorithm – Individual Components
- Consider input to be a congregation of pipes, planes and objects
- Primitive Extraction
 - Pipes are modeled by projecting normal on Gaussian sphere and detect global similarity, creating pipes with detected parameters
 - Plane points are classified by FPFH descriptors trained by SVM
- Object Recognition
 - Object are recognized by converting point clouds into 3D image, then using scanning window to extract and evaluate 3D features

Algorithm – Cross-Component Improvements
- Recognized objects may not be aligned with each other because they are independently searched for and detected
- Align pre-defined object axis to pipe segment already modeled
- Establish missing pipe segment from gaps between detected objects
- Removing primitive shape points can speed-up object recognition

Results Labelling and Display
- Pipes, planes and objects are independently recognized and modeled
- Objects can be displayed in point clouds for accuracy, mesh model for efficiency or original point cloud cropped at detected locations
- Compare to original point cloud, professionally hand-made model (wrong number of pipelines) and automatic commercial software

Algorithm Flow-chart

More Results

Acknowledgement: This work is supported by Chevron U.S.A. Inc. under the joint project Center for Interactive Smart Oilfield Technologies (CiSoft), at the University of Southern California.