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ABSTRACT 

In this paper, we propose an augmented reality application for 
museum exhibitions using natural features instead of calibrated 
fiducials to recognize paintings and recover their pose. 

The proposed system utilizes an adapted Multiple View Kernel 
Projection (MVKP), which combines a multiple view training 
stage for geometric invariance and kernel projection based on 
Walsh-Hadamard kernels for feature description. We demonstrate 
that its real-time performance and robustness to lighting and 
viewpoint changes make it ideal for AR applications like AR 
exhibition systems. After obtaining the painting’s index, the 
system retrieves related information from a remote server and 
displays it as virtual content overlaid on top of the painting image. 
Experimental results on a real-world painting exhibition have 
demonstrated the effectiveness of the proposed approach. 
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1. INTRODUCTION 
For augmented reality systems, it is essential to establish a link 
from the objects in the physical world to the desired displays in 
the augmented world. In our case, this entails recognizing an 
object so that we can retrieve its associated data and recover its 
3D pose so that virtual objects can be accurately rendered. Most 
previous systems rely on tagged IDs or markers [1, 2, 3, 4]. While 
maker-based methods have demonstrated excellent speed and 
reliability, it is often difficult, if not impossible, to display a 
marker alongside every exhibit in an entire museum. Moreover, 
markers generally do not work well in the presence of occlusion. 

Another line of research uses vision-based methods to determine 
an object’s physical location and 3D pose. While some traditional 
single view based recognition techniques are robust and accurate 
enough for AR requirement, the majority is too slow for real-time 
applications. In recent years, multiple view image matching 
approaches [15, 16] received growing interests due to their real-

time performance. However, to achieve the same robustness and 
accuracy, a large number of training views are generally needed 
and thus demands powerful and expensive hardware. 

This paper proposes the use of natural features generated by 
Multiple View Kernel Projection [5]. Using Walsh-Hadamard 
kernels projection [6], real-time MVKP has demonstrated both 
effectiveness and robustness for planar objects such art paintings 
using a small number of training views. Additionally, as an image 
matching method based on local features, it naturally handles 
complex conditions such object occlusion and cluttered 
foreground or background, both typical challenges for an art 
museum with a large number of visitors. 

The MVKP approach first builds a feature database for each 
painting based on a multiple view training stage. Given one input 
image for each painting, MVKP generates a number of 
synthesized affine transformed training views, detects and selects 
interest points, and describes local image patches around those 
interest points with Walsh-Hadamard kernel projection. After the 
training stage, Faster Filtering Vector Approximation [7] is used 
to establish feature correspondences between a query image and 
the painting feature database. Based on the object recognition 
result, complementary information can be retrieved from a remote 
server and displayed accordingly. We also introduce several 
important adjustments of the original MVKP method so that it 
will work better for the augmented exhibition system. 

The remainder of this paper is organized as follows: Section 2 
briefly summarizes related works. Section 3 provides an overview 
of our virtual exhibition system. Section 4 describes the adapted 
MVKP method as well as client/server information retrieval. 
Section 5 is the real-world painting exhibition experiment, 
followed by the conclusions. 

2. RELATED WORKS 
Augmented Reality is a natural platform on which to build an 
interactive museum guide. Rather that relying solely on printed 
tags or prerecorded audio content to aid the visitor, an AR system 
can overlay text and graphics on top of an image of an exhibit and 
thus provide interactive, immersive annotations in real-time. 

Graffe, et al., for example, designed an AR exhibit to demonstrate 
how a computer works [8]. Their system relies on a movable 
camera that the user can aim at various parts of a real computer. A 
nearby screen then displays the camera image annotated with 
relevant part names and graphical diagrams. 

Schmalstieg and Wagner presented a similar system using a 
handheld device [1]. As the user walks from place to place, AR 
content provides information not only about the current exhibit, 
but also acts as a navigational tool for the entire museum. 
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Both of the above systems rely on printed markers for recognition 
and tracking. That means that for every object to be incorporated 
in the AR application, a marker needs to printed and placed in the 
environment in such a way that it is always clearly visible. If at 
any time, no marker is visible inside the camera’s field of view, 
then no AR content can be rendered. This can lead to frustrations 
when a particular exhibit is fully visible but its associated marker 
is obscured, perhaps because another visitor is standing in the 
way.  

Our work seeks to avoid the need for artificial markers by 
recognizing the target objects themselves, in this case 2D 
drawings and paintings. Thus, as long as an exhibit is visible to 
the user the application can render the associated AR content. 

A number of approaches have been proposed for building natural 
feature based AR [9][10][11]. In this paper, we use the real time 
image matching technique described in [5].  

Our information retrieval system is based on a simplified version 
of the multi-tier client/server architecture described in [4]. The 
user interacts with a client application that recognizes exhibits and 
sends their unique ID numbers to the server. The server then 
responds with all of the relevant data for that exhibit. Thus, even 
with a large number of clients, content for the entire application 
can be controlled from a single server. 

3. SYSTEM OVERVIEW 
The vision-based augmented exhibition system we proposed is 
composed of four major components: 
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Figure 1. System overview of our augmented exhibition system 

 

♦ Acquiring query image: the system accepts query images 
captured from simple camera attached to a mobile device. It 
can also accept single JPG images or video clips. 

♦ Adapted MVKP: there are two main tasks for this 
component. First, given a painting, it builds the feature set 
for the painting. Low-resolution images (around 200x150) 
are enough and there is no need to extract the painting from 
the image in order to remove the background. Second, given 
the query image, it matches the painting to the database. If 
one of the trained paintings is matched, it establishes a 

feature correspondence between query image and database 
image. The output is the painting’s ID and 3D pose with 
respect to the camera. 

♦ Remote Server: After the server receives the painting ID 
through a local Internet, it retrieves the corresponding 
information from its database (XML file), which it sends 
back to the client. 

♦ Overlaid Display: The client application, upon receiving the 
associated annotations from the server, displays them as 
overlaid virtual content on top of the current camera image. 
The virtual contents include the name of the painting and 
artist as well as a URL pointing to related information on the 
Internet. The visitor can click on the URL, which will open a 
web browser and bring up even more information. 

 

Figure 1 illustrates the overall structure of our augmented 
exhibition system. Two major components: adapted MVKP and 
remote server are described in the following section. 

 

4. MVKP AND INFO RETRIEVAL 
Based on the practical requirements of the application, we chose 
to use MVKP as a foundation for painting recognition and 3D 
pose recovery. The major advantages of MVKP are: (1) 
robustness to lighting changes and image noises, (2) invariance to 
geometric distortion, (3) ability to handle complex conditions like 
occlusion and cluttered background, (4) sufficient accuracy for 
pose recovery, (5) particularly good for rigid planar objects like 
art paintings, (6) real-time, reliable performance, and (7) feature 
distinctiveness when considering a large feature database. All of 
these advantages make it ideal for the application of vision-based 
virtual exhibition system. 

We also introduce several important adaptations to the MVKP 
method to better accommodate the requirements of AR. 

In our augmented exhibition system, the outputs of MVKP 
method are a painting’s ID and its 3D pose. The ID is then sent to 
a remote server through a WiFi LAN connection to retrieve the 
related complementary information to be displayed as virtual 
content on top of the painting. 

4.1 MVKP method 
The MVKP method in our augmented exhibition system consists 
of two parts: offline training and online query matching. We use 
Walsh-Hadamard kernel projection to describe a local image 
patch around each interest point. Kernel projection using Walsh-
Hadamard kernels is able to measure the similarity between two 
sets of image patches reliably and in real time. It cannot, however, 
handle geometric distortions caused by viewpoint changes. To 
overcome this shortcoming, we combine the Walsh-Hadamard 
kernel projection with a multiple view training stage. The training 
stage provides additional information about affine distortions, 
allowing the same object to be matched under different view 
angles. 

The whole method’s overview is given in figure2. The details for 
each component are provided as follows: 
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Figure 2. Structure of MVKP component in our augmented 

exhibition system 

4.1.1 Offline training 
The geometric distortion of planar object brought by 3D view-
point changes can be synthesized by affine transformation. During 
the offline training stage, the MVKP method first synthesizes a 
number of training views based on the input painting image and 
randomly generated affine transformations. A general affine 
transformation can be expressed as the following [12]: 
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where R is a rotation matrix and t is a translation with 
components 

1t  and 
2t . Matrix A corresponds to a rotation of θ  

first, followed by a rotation of φ−  then scale changes of 
1λ  and 

2λ in horizontal and vertical direction respectively. At last, the 
image is rotated back by φ . The six affine transformation 
parameters are generated randomly to cover the whole parameter 
space for rotation and shear angles. So we choose the ranges 

[ , ]θ π π∈ − , [ / 2, / 2]φ π π∈ − , 1 2,λ λ ∈[0.4, 1.6], 1 2,t t =  0, 1, 
2, or 3. 
An interest point detector will then detect potential feature points 
for all the generated training views. The detector searches for 
local maxima of the eigenvalues within 3 by 3 patches and 
guarantees one feature point should not be too close (for example, 
3 pixels) to one another. Since we stored the affine 
transformations used to generate the training views, we are able to 
tell which feature points belonging to different training views 

correspond to the same physical object location. Consequently, 
for each physical object location we know how many times it has 
been detected, and thus obtain a measure of repeatability. The 
feature selection steps will select a number of (100-200 in our 
experiments) feature points with comparatively high repeatability. 
For each training view, we then extract 32x32 pixel image patch 
around each selected feature point, which we use to build 
descriptors for each feature. Figure 3 shows some sample 
extracted image patches corresponding to the same physical 
objection location. 

 

 

 
Figure3. Training image patches belonging to the same 

physical location 

 

With all image patches by physical object locations, we build 
feature descriptors using Walsh-Hadamard kernels projection. 
Our strategy is to treat each patch as a vector composed of 1024 
pixel intensities. These vectors can be projected onto a much 
lower dimensional space and still preserve the distance 
relationship between distinct patches.    

We choose to use the Walsh-Hadamard kernels for the following 
reasons: (1) the Walsh-Hadamard kernels are very fast to compute 
and apply. One-dimensional kernels can be generated using a 
binary tree while consecutive kernels are α-related. Two-
dimensional kernels can be generated as the outer product of one-
dimensional kernels. All the coordinates of Walsh-Hadamard 
kernel’s basis vectors are either +1 or –1. Consequently, 
projection onto Walsh-Hadamard kernels can be performed very 
fast. (2) it has been shown [13] that when the kernels are ordered 
according to increasing frequency of sign changes, an accurate 
lower bound of the original feature vectors’ distance can be 
achieved using only a small number of kernels. Thus, we can 
greatly reduce the computational complexity. 

Experimental results demonstrate that the Walsh-Hadamard 
kernels projection approach remains effective even under very 
noisy conditions. Furthermore, the first WH kernel corresponds to 
a DC value for the entire patch. By disregarding this value, we 
achieve a form of lighting invariance for the whole system. 

The output of the offline training stage is a feature database for 
paintings, which consists of feature descriptors labeled by the 
physical object locations they correspond to. In our experiments, 
we typically use only the first 20 Walsh-Hadamard kernels; each 
feature descriptor is thus a 20-dimensional vector. K-means with 
10-20 clusters is used to further reduce the size of database. 



4.1.2 Online query 
The online query stage first runs the same interest point detector 
on the query image. The only difference is, because this is an 
online stage designed to be as fast as possible, we only select a 
number of “strongest” feature points reported by the detector. 
After the interest point detection, the intensity values of the image 
patch around each interest point give us a set of feature 
descriptors. We normalize (translate and rescale) each patch’s 
intensity values to the same range in order to enhance the 
performance against illumination changes.  

We next establish correspondences between the query features 
and the database features. This turns out to be the most time-
consuming step of online query. 

Features are matched by their Euclidean distance in the 20-
dinemnsional WH kernel projection space. Based on the intrinsic 
properties of the feature descriptors generated by MVKP, we use 
FFVA method [7] to do the nearest neighbor search between two 
feature sets. FFVA breaks down the nearest-neighbor search into 
two levels: 1) The coarse search level sequentially scans an 
approximations list and eliminate a large portion of data using 
block distance as lower bound, and 2) The real data search level 
calculates an accurate Euclidean distances to the remaining 
candidates and decides the final nearest neighbor. 

Because some detected features will be located on the background 
or on other people or objects in the museum, clearly not all the 
features should be matched. Thus, distance ratio is used as 
evaluation criteria. That is: “the second closest neighbor should 
be significant far away from the closest one”[14].  We only accept 
values where the ratio of these two distances is large. 

Finally, RanSac is applied to those correspondences that meet the 
distance ratio criteria. Because the museum paintings can be 
assumed to be planar, we randomly use affine transformation to 
fit the correspondences and keep the affinity that is consistent 
with the largest subset. The final outputs are a set of consistent 
point-based image matching and the corresponding affinity. 

4.2 Adaptations 
Originally, the MVKP method was used to find correspondences 
between two input images, which means: (1) there is no need to 
detect the existence of interest object and there is no search 
among multiple objects involved, and (2) thresholds like the one 
in the distance ratio criteria can be set manually since you know 
the query image beforehand. However, we have to make several 
important adaptations to the original MVKP method to meet the 
application requirements of augmented exhibition system. 

First, for the augmented exhibition system, there can be hundreds 
of various painting displayed in the museum and some of them 
are high-textured paintings and some are not. Figure 4 shows two 
representative paintings. The right painting returns 50% more 
feature points than the left one after running the same detector. 
For those painting with low texture, the number of feature points 
returned by the detectors will also be low, which means the 
threshold in distance ratio criteria should also be low for it to 
work properly. Further more, there are other factors like feature 
distinctiveness of a specific painting that also affect the same 
threshold. And there are thresholds sharing the same dilemma 

other than distance ratio, for example, those thresholds in RanSac 
algorithm. 

 

 
Figure 4. Low and high texture paintings. All artwork 

courtesy of Riko Conley, USC Roski School of  Fine Arts 

To tackle this problem, we introduce dynamic thresholds to 
MVKP method. Take the threshold of distance ratio criteria for 
example. First we set up a global goal about how many 
correspondences we’d like to keep after applying the distance 
ratio filter. At the run time, we periodically (10 times in our 
experiments) check the number of correspondences the method 
has found so far, compare it with the global goal, and adjust the 
threshold accordingly. Experimental results show that, with the 
help of the automatic adjusted thresholds, for high-textured 
painting we can keep the number of correspondences low and 
accordingly the computational cost low. For low-textured painting 
we will still have enough correspondences to recognize the 
painting and recover its pose. 

Second, the user of the augmented exhibition system can point the 
camera to anywhere inside the museum where the query image 
might contain no painting at all. If there is one, we need to search 
and decide which painting it is. Based on our experiments, we 
found the size of the largest consistent correspondences set after 
running the RanSac is the best criteria to determine which 
painting, if any, is contained inside the query image. 

Last but not the least, for image matching methods based on local 
features, especially when the query image has significant view 
point and lighting changes, consistent set check methods like 
RanSac are necessary in order to combine the global information. 
One problem involving RanSac in AR system is stability. RanSac 
randomly chooses three correspondences to fit an affine 
transformation, for performance consideration, terminates after a 
limited number of iterations. Therefore, there is no guarantee that 
the correct affine transform can always be found. Failure of 
RanSac typically means one or two frames “lose the target”, 
which should be avoided for AR applications.  

To solve this problem, we assume that when a certain painting is 
detected in one frame by the system, it is more likely that the 
same painting will appear in the following frames. In practice, 
after one painting is detected, the system will focus only on that 
painting’s features in the following frames even after it 
encounters a RanSac failure. The system will revert to general 
search mode only when RanSac process fails a certain number of 
consecutive times. Through this implementation technique, we 
achieve stable and smooth displays for the augmented exhibition 



system. Besides this simple technique, every frame of the input is 
processed independently and there are no tracking techniques 
involved in our current system.  

4.3 Information Retrieval 
Our system is based on a client/server architecture, where the 
client performs all of the visual processing and recognition and 
the server maintains a database of all known exhibits and their 
associated data. When the client positively identifies 
an exhibit, it sends a unique ID to the server. The server looks up 
the ID in its database and retrieves the relevant data, which may 
include the name of the work, the name of the artist, and possibly 
links to related web pages.  It sends this data back to the client to 
be displayed over the current camera image of the exhibit. 

The advantage of using a client/server model is that changes to 
the underlying information can be changed in one place. 
Whenever a client application recognizes an exhibit that it has not 
seen recently, it sends a new request to the server to retrieve the 
latest data. Due to the ready availability of wireless LAN 
technologies such as WiFi, it is easy to have a mobile client make 
periodic request to a server. Only one send-receive round trip is 
needed for each exhibit, so the client and server do not need to 
maintain a persistent open communications channel. 

5. EXPERIMENTS 
This section provides the experimental results for our augmented 
exhibition system. We use both synthesized data and real data to 
demonstrate the system’s effectiveness. Even in the most 
challenging real museum test, we found that for each painting 50 
generated training views and 100 features were enough for 
reliable performance. Other state of the art image matching 
methods typically require around 1000 training views [15] and 
several thousands features [14] for each object. 

5.1 MVKP Performance 

 

 
Figure 5. MVKP test, image matching and pose recovery 

The core part of our augmented exhibition system is MVKP 
image matching. To demonstrate its effectiveness, especially 
compared with marker-based techniques, we tested both 
synthesized images with geometric distortion as well as manual 
occlusions and real image with cluttered backgrounds. Figure 5 

illustrates some of the results. The system consistently runs at 
about 20 frames per second on a standard Windows PC with 
3.4Ghz CPU. 

5.2 Real Museum Test 
Figure 6 shows the main control interface of our system. Many 
algorithm controls like dynamical threshold can be accessed 
through switches on the interface. For training the system, we first 
read an image from hard disk or capture a still image from the 
connected web camera. After clicking the training button, it takes 
approximately one minute to train the feature database for one 
object and save all the training result to hard disk. After that, 
when the system restarts and needs to train the same object, it will 
automatically load the trained feature database from hard disk, 
requiring only a few seconds. Our system can accept three kinds 
of input for query image: still image, live video from a video 
camera and video clip from a hard disk. The system supports five 
different modes to display the matched correspondences, painting 
recognition result and recovered pose. 

 
Figure 6. System main control interface 

In our real museum test, we capture a video from a gallery at the 
USC School of Fine Art and process the video in our augmented 
exhibition system with four painting trained. During the video 
capture, we intentionally includes many challenging cases like 
out-of-plane rotation of the camera, moving highlights on the 
painting, sudden change of illumination, intense shaking of the 
video camera, etc. Overall, our augmented exhibition system 
demonstrates fast and reliable performance. Figure 7 and 8 
illustrate the results with the matched correspondences displayed 
or hidden. A video clip showing the real-time processing together 
with the overlaid virtual content displayed is also available online 
(http://128.125.163.55/~ISMAR2007/DemoVideoQW.avi). 

 



 
Figure 7. Real museum test, with image correspondences and 

recovered pose displayed 

 
Figure 8. Real museum test, with retrieved information 

displayed and image correspondences hidden 

6. CONCLUSION AND FUTURE WORK 
This paper addresses the greatest limitation of current systems: 
the reliance on fiducial markers. We propose the use of natural 
features replacing artificial markers and demonstrate the many 
advantages of such an augmented exhibition system. The core 
part of our system is the MVKP image matching method and we 
introduce several important adaptations to incorporate it into the 
augmented exhibition system and enhance the real-world 
performance. 

The overview of the whole system and the details of the major 
components are provided. Experiments demonstrate the feasibility 
of the proposed system under various practical and challenging 
conditions. 

Possible directions for future work include: combining tracking 
techniques into the current system to obtain helpful between- 
frame information and adding a pre-attention stage before the 
MVKP to further reduce computational cost.  
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