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Abstract 
This work examines the network performance of mesh- 

connected multicomputers applied to parallel volume rendering 
algorithms. This issue has not been addressed in papers describing 
particular parallel implementations, but is pertinent to anyone dc- 
signing or implementing parallel rendering algorithms. Parallel 
volume rendering algorithms fall into two main classes - image and 
object partitions. Communication requirements for algorithms in 
these classes are analyzed. Network performance for these algo- 
rithms is estimated by using an existing model of mesh network 
behavior. The performance estimates are verified by tests on the 
Touchstone Delta. The results indicate that, for a fixed screen size, 
the performance of 2D mesh networks scales very well when used 
with object partition algorithms - the time required for communi- 
cation actually decreases as the data and system sizes increase. A 
Touchstone Delta implementation of an object paflition algorithm 
is briefly described to illustrate the algorithm’s low communication 
requirements. 

1. Introduction 
The computational cxpensc of volume rendering has motivat- 

ed the development of parallel implementations on multicomputers. 
Through parallelism, higher rendering rates may be achieved which 
provide more natural viewing control and enhanced comprehension 
of three dimensional structure. Many parallel implementations 
have been reported, but no framework has been established to al- 
low comparisons of their relative merits independent of their host 
hardware. This work builds on a taxonomy of parallel volume ren- 
dering algorithms suitable for MIMD multicomputers with distrib- 
uted memory and a communication network [Neumann93]. Three 
classes of parallel algorithms are considered in a systcm- 
independent fashion that reveals their inherent communication 
requirements. To illustrate the usefulness of these results. the al- 
gorithm communication requirements are applied to mesh- 
connected multicomputers and the predicted performance levels 
are compared. 

It is important to clarify the distinction between a parallel volume 
rendering algorithm and a volume rendering method like ray cast- 
ing [Levoy88] or splatting [Wcstovcr89]. A parallel algorithm 
describes how data and computation is distributed among the rc- 
sources of a system. In such a description. the rendering method is 
not an issue and may bc unspecified. For example, a simple paral- 
lel algorithm for a system with II nodes divides the screen into n 
regions and assigns each node a separate region to render. This 
parallel algorithm does not specify what rendering method is used 
by each node to render its region. By considering parallel algo- 
rithms and rendering methods independently, the performance 
ramifications of each issue may be considered separately and more 
clearly. 

The choice of parallel algorithm has a major impact on the com- 
munication requirement between nodes. Unless all nodes have a 
local copy of the data, or viewing positions are severely restricted, 
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a parallel volume rendering algorithm intrinsically requires data to 
be communicated between compute nodes. Replication of data at 
each node is prohibitively expensive for large numbers of nodes 
and restricting the viewing positions limits the ability to explore the 
data; so. in the general cast. communication must occur. Com- 
munication between nodes in a parallel system is time consuming 
and may degrade pcrformancc significantly, so understanding the 
inherent requirements of an algorithm is important when consider- 
ing its use. The peak amount of data communicated per frame is 
independent of the rendering method. The choice of rendering 
method may reduce the actual requirement; for example, nodes 
that render by ray casting may adaptiveiy terminate rays and there- 
fore not access portions of the data that would otherwise be needed. 
Such efficiencies are data dependent but often significant 
[Levoy90] [Danskin+92]. In this analysis, the peak communication 
requirement is derived as an upper bound with the understanding 
that rendering efficiencies may reduce this by some factor. The 
behavior of the communication requirement as data, image, and 
system sizes vary is also important and clearly revealed. 

Communication between nodes in multicomputers is frequently 
through two and three-dimensional mesh connected networks 
[Dash] [Delta] [JMach] [Mosaic] [Paragon]. The performance of 
these communication networks with parallel volume rendering al- 
gorithms is the focus of this work. Of particular interest is the 
analysis of network performance as the volume data and system 
size increases. This becomes increasingly important as technology 
advances make more computing nodes practical in parallel 
systems. Using simulation results and the analysis of the commu- 
nication requirements for three classes of algorithms, an existing 
model of mesh network behavior is used to produce expressions for 
the time consumed by communication. These results predict that. 
for a fixed image size. the class of object partition algorithms re- 
quires decreasing communication time as the data and system sizes 
grow. This scaling behavior of object partition algorithms on mesh 
networks is verified by experimental tests run on the Touchstone 
Delta. 

2. Parallel Algorithms 
The two main classes of parallel algorithms are image pnrti- 

tions and object partitions. In an image partition, nodes are 
assigned regions of screen-space to render. Data must be commu- 
nicated to the nodes based on the view transformation. In an object 
partition, each node renders a color and opacity image of its local 
data subset. The local images arc then communicated to facilitate 
their composite into the linal image. The member algorithms in 
each class differ in the shapes of the data and image subsets. the 
subset’s static or dynamic nature over time, and the spatial rela- 
tionship of the subsets to each other [Neumann93]. This study is 
limited to regular lattices of data and the rendering algorithms as- 
sociatcd with them. Three classes of useful algorithms arise 
because image partitions divide into two different subclasses - one 
with a static data distribution, and one with a dynamic data 
distribution. 
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Fig. I. - Data subset shapes 

In any parallel algorithm, volume data subsets may be distributed 
among nodes in three shapes: sl&s. shufrs. and blocks (Fig. I). 
When data is communicated, the subset size is the granularity of the 
transfer. To allow reasonably small transfers there may be more 
data subsets than nodes, so a node may store multiple subsets in its 
local memory. If these multiple subsets are spatially adjacent, (e.g., 
multiple slices forming a slab) they arc classilied as conliguous. 
Any other spatial arrangement is classilied as inrerlem*ed. If the 
distribution of subsets varies between frames, the distribution is 
dwmnic. An unchanging distribution is sratic. 

The communication of data or images that arises from any algo- 
rithm is referred to as redisMmtion. The redistribution size for 
each algorithm class and the cost for transmission through the nct- 
work is formulated in section 4. It bears rcpcating that no rendering 
method is implied in this analysis - the peak redistribution size and 
cost are not impacted by the choice of rendering methods. 

3. Network Model 
Current generation mesh and toroidal networks employ \hual 

cur-rl~o~cgh, oblivious, wormhole routing techniques [Delta] [Par- 
agon]. This terminology and the characteristics of these networks 
are reviewed below. 

Virtual cut-through rcfcrs to the way messages pass through 
intermediate network nodes between the source and desti- 
nation nodes. Routing logic on intcrmcdiate nodes detects 
the message destination encoded into the message header, 
and forwards the message to a neighboring node without 
interrupting the intermcdiatc node’s processor. 

A network that has fixed, deterministic message routing paths 
for any source-destination node pair. is referred to as 
oblivious. In contrast, an ndoptive network routes a mcs- 
sage based on the utilization of local paths. 

A nrormhole routing network establishes a connection between 
the source and destination nodes through which the mcs- 
sage flows. If a needed path is already occupied. progress 
toward establishing the connection is blocked until the 
needed path is relinquished. Once a connection is estah- 
lished, the full message flows through it without 
interruption. A partially-routed blocked message occupies 
paths that may in turn block other messages. 

John Ngai [Ngai89] characterized these networks while proposing 
adaptive enhancements. Some of Ngai’s test results for 2D and 3D 
mesh and torus topologies are reproduced in figure 2. The test 
conditions of uniformly-random message destinations and fixed- 
length single-packet messages are reasonable simplifications of the 
conditions encountered in some of the parallel algorithms consid- 
ered here. The major performance aspects of these networks arc 
the rhrouglrl>~cl and average lorency of messages as a function of 
applied loccd and hisecriotl bnndn,idrh. 
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(adapted from [Ngaigg]) 

Throughpur is a measure of aggregate network message dcliv- 
cry bandwidth. 

Loteric! is the delay from a source node’s injection of a mcs- 
sage header into the network until the completc message 
exits the network at the receiving node. 

App/ied load is the aggregate message injection bandwidth into 
the network. 

Biseclion bandwidth is the aggregate peak bandwidth through 
the minimal set of routing channels that. when removed, 
splits the network into two equal and disjoint parts. 

For a network with tz nodes. let II = k”, where k is even and (I is the 
dimension of the mesh. The bisection width of a mesh is II / k 
channels. The bisection bandwidth of a mesh and torus is 

bmes,, = c II I k (1) 

b,,,,,, = 2 c n I k 

where c is the handwidth of a single communications channel. 
Toroidal topologies have additional wrap-around connections that 
double the mesh bisection for a given k and tt. 

Under steady state conditions, network throughput equals the ap- 
plied load. As the applied load increases beyond what the network 
can deliver, messages are queued at the source and delayed without 
bound; this source queueing time is separate from the network la- 
tency measure. Throughput in figure 2 is normalized to the 
maximum load that saturates the bisection bandwidth. All nodes 
inject fixed-length messages into the network at a unilorm rate and 
to uniformly distributed destinations. The network is bidirectional 
with separate paths for message Ilow in opposite directions. Nodes 
on each side of the bisection send one-half of their mcssagcs across 
the bisection. An injecrion bundrvidrlr of 4 at each node saturates 
the bisection paths when 

qmesh = 4 c 1 k (3) 

qlorus = 8 c I k (4) 
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Since a torus has twice the hiscction bandwidth of a mesh with 
identical dimensions. the injection bandwidth rcquircd to saturate 
the bisection is also douhled. At this srrfurufiorz load, the aggregate 
bandwidth injected into the network is II y, which represents a nor- 
malized load of I .O. The normalized load and normalized through- 
put are a fraction of the saturation load. 

Communication times are estimated under the assumption that c is 
sufficiently great to keep the normalized load and throughput IO.3 
for meshes and I 0.6 for tori. Under these conditions, the average 
latency is roughly equal in either network of size II. 

4. Parallel Algorithm Perfnrmance 
Three classes of parallel algorithms arc considered: image 

partitions with static and dynamic data distributions, and object 
partitions with block data distributions. 

4.1. Image Partition with Static Data Distribution 
In this class of algorithms, nodes are assigned one or more 

rectangular screen region to render [Challinger91] [Corrie+92] 
[Montani’92] [Nieh+92] [VCzina+92] [Yoo+91]. Data subsets are 
distributed among the nodes in a predetermined fashion. Such data 
distributions arc considered static since each access to a given data 
point is always to the same node. To rcndcr their region(s), nodes 
access remote or local data as necessary. based on the current view 
transformation. lnterlcavcd static data distributions can produce 
redistribution routing patterns that approximate the uniform ran- 
dom distribution used to characterize network pcrformancc. A 
fine-grain randomly-intcrlcavcd block data distribution achieves 
this and makes the redistribution size view-independent [Nieh’B?]. 

Redistribution size may be lowered by replication of the data set. 
Define a data size d and a replication factor r 1 (r I n). Each node 
needs about Ilrr’th of the data to rcndcr its assigned region. Nodes 
have (r d/n) randomly located data points in their local memory, 
and of those, (r d/t?) points are needed for rendering their assigned 
region. Redistribution size is 

ttlmdisl = d - r dltl (5) 

If r = tr, every node has a complete copy of the data and the redis- 
tribution size is zero. As d increases for a fixed n and node memory 
size. r approaches zero and the redistribution size approaches d. 
The redistribution time for a 2D mesh under a normalized load of 
0.3, is 

=(d-rd/n)/(l.2n”‘c) (6) 

Network throughput is O(n”‘); if n is scaled in proportion to cf. 
throughput increases too slowly to maintain constant redistribution 
time. Toroidal 2D topologies exhibit the same behavior except for 
a factor of four in their throughput. This is the expected behavior 
of mesh networks - the average injection bandwidth approaches 
zero as the mesh size increases. 

Recall that the throughput of a 3D mesh of n nodes is nn6 greater 
than a 2D mesh for the same latency, so 

t3Drcdisl =(d-rd/n)/(1.2n ?‘I4 c) (7) 

Equation 7 shows that 3D topologies scale only slightly better than 
their 2D counterparts for this class of algorithms. 

These results indicate that the redistribution time for image parti- 
tion algorithms with static data distributions does not scale well on 
mesh networks as (I and n are increased proportionally - the rcdis- 
tribution time grows as d and tz increase. However, if the data size 
is kept constant, the redistribution time decreases as n increases. 

Section I described how rendering efiicicncics can reduce redistri- 
bution costs. These costs may also bc lowered by using large 
caches to take advantage of temporal coherence [Corrie’92] 
[ Hubbold931. A node’s cached values from the previous frame are 
likely to be a substantial fraction of the values it needs for this 
frame. 

Note that computation time has not been addrcsscd. The rendering 
method is the major factor impacting a node’s computation time 
and is not addressed here. Equations 6 and 7 indicate that if d and 
tz are increased together, regardless of the rendering method. the 
algorithm’s redistribution time will grow and potentially limit the 
overall performance. 

4.2. Image Partition with Dynamic Data Distribution 
This class of parallel algorithms differs from all others in that 

data migrates among nodes in response to view changes - there is 
no particular node that will always have a particular data value. No 
implementations of this class of algorithms have been reported. 
The main advantage of a dynamic distribution over a static one is 
that network utilization is high. even for large systems. Ry match- 
ing the network and partition dimensions, and mapping neighbor- 
ing screen regions to neighboring nodes. communication can be 
limited to adjncenl nodes. Adjacent nodes arc defined as having a 
routing distance of one or zero along each dimensions of the 
network. Network throughput for communication between adja- 
cent nodes is similar to nearest-neighbor throughput. Due to the 
bounded distance between nodes, they are within a constant factor 
of each other. Throughput for adjacent-node communication is 
proportional to tz. 

View changes must bc bounded to ensure that data subsets migrate 
no farther than adjacent nodes. Figures 3. 4, and 5 show experi- 
mentally measured redistribution sizes as a function of rotation 
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about one or more axes. A 64s data set is transformed by the rota- 
tion angle given by the abscissa. Transformed data points that fall 
in different image regions from their starting regions are counted 
towards redistribution. Each figure has best-case and worst-cast 
rotations for the angles given by the abscissa. Figures 3, 4, and 5 
are for slab, shaft, and block image-space regions on lD, 2D. and 
3D mesh topologies, respectively. Although average redistribution 
size is plotted. the position of a node’s data subset, relative to the 
axis of rotation, will affect the redistribution size at that node. 

Slab distributions (Fig. 3) show an approximate doubling of aver- 
age redistribution size between two and sixteen nodes. This is due 
to the fact that for n nodes, there are n-l boundaries for data to 
migrate across. For large II, the average redistribution size remains 
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Fig. 5 - Redistribution with blocks on 3D network 

constant. The downward curve in the sixteen node case is caused 
by a rotation angle large enough to cause data to migrate beyond 
adjacent regions. With slabs oriented as shown in figure 1. rotation 
about the vertical axis causes no redistribution. The ID rotation 
data in figure 3 corresponds to rotation about the horizontal axis. 
The 2D rotation data in figure 3 is equivalent to 3D rotation and 
represents the worst-case redistribution size for a given angle. ap- 
plied successively about each axis. 

Shaft (Fig. 4) and block (Fig. 5) distributions show a decrease in 
average redistribution size as n increases. In figures 4 and 5, the ID 
and 3D rotations cause minimal and maximal redistribution size. 
respectively. With all dynamic distributions, the average redistti- 
bution size for a given rotation angle is proportional to the data 
size. When d and n increase proportionally, the net effect is still to 
increase the avcragc redistribution size. For example, with a block 
distribution under 3D rotation. increasing the number of nodes 
from 8 to 64 decreases the average redistribution size to about 113 
while the data size increases by a factor of tight; this produces a net 
factor of 8/3 increase in redistribution size at each node. In order to 
maintain a constant average redistribution size as d and n get larger, 
the rotation angle must decrease. 

Although dynamic data distributions do not maintain a constant re- 
distribution cost for proportionally increasing d and n, the redistri- 
bution cost does decrease as n increases for a fixed data size, and 
the redistribution size may be controlled by bounding the view 
changes. As systems grow to hundreds and thousands of nodes. 
this class of algorithms maintains high network utilization which is 
not achieved with the static data distribution characterized in sec- 
tion 4.2. It remains to be seen, however, whether implementations 
of dynamic data distribution algorithms fulfill these expectations. 

4.3. Object Partition with Block Data Distribution 
In object partition algorithms, nodes compute an image of 

their local data subset and redistribute the local images among 
themselves to perform the global composite that produces the final 
image [Challingcr91] [Yoo+91]. The view point affects the redis- 
tribution size as a function of the aspect ratio of the data subsets. 
Slabs, shafts, and blocks vary from highly unbalanced aspect ratios 
to perfectly balanced ratios. As the view point changes. local im- 
ages cover varying amounts of the screen, thereby varying the 
redistribution size. Figures 6, 7, and 8 arc graphs of the average, 
per-node, redistribution size for different data subsets over a range 
of rotation angles. These graphs are experimentally obtained using 
a 64.’ data size and a 128’ screen size. Rays arc traced through the 
data subsets and the number of subsets encountered is recorded. 
The aggregate number of data subsets the rays pass through is the 
minimum redistribution size. The view transformation is aftine 
and formulated so that a rotation of zero degrees produces a full- 
screen image of the data. Based on the data subset orientations in 
figure I, all ID rotations (Figs. 6.7,8) are specified by the abscissa 
and applied about the horizontal axis. The 2D shaft rotations (Fig. 
7) create a worst-case by applying a constant 90” vertical axis ro- 
tation in addition to the variable horizontal axis rotation. The 3D 
block rotations (Fig. 8) create a worst-case by applying the abscissa 
angle equally about all three axes. 

Figures 6. 7. and 8 show that block data distributions produce the 
lowest maximum redistribution size and achieve the mosl view- 
independence. The slab and shaft distributions have slightly lower 
best-case figures, but their strong view-dependence makes their 
worst-cases much higher. Therefore, blocks are considered the op- 
timal data distribution. The local image size at each node in a block 
data distribution is approximately p II-“’ pixels, where p is the 
number of pixels in the final image. The local images must be 
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composited properly to produce the final image. To achieve good 
load balance and network utilization. many small cornpositing re- 
gions are assigned to each node in a random or interleaved 
distribution. Approximately I/n’th of each node’s local image pix- 
els are cornposited into the same node’s assigned compositing 
regions so the total redistribution size is 

,n,,(Jin z p rP3 (1 - I/n) (8) 

Use of interleaved or randomized cornpositing regions also ran- 
domizes the redistribution network traffic, thereby matching the 
assumptions of the network performance model. The redistribution 
time for a 2D and 3D mesh under a normalized load of 0.3 is 

brcdisl = ‘%edist / (0.3 n Ymesh) 

Eppn”3(l - l/n)l(0.3n4c/k) 

rp(l - lln)/(l.2Pc) (9) 

~3Drtxlist zpn”3(l - 1/12)/(0.3114c/x.) 

Z:p(l - lln)l(1.2n”“c) (IO) 

Toroidal topologies exhibit the same behavior except for a factor of 
four increase in network throughput. If the screen size p is held 
constant as the number of nodes increases, the redistribution size 
increases but the network throughput increases even faster so the 
time for redistribution actually decreases. Furthermore, since 
equations 9 and 10 are independent of d, both d and n may be in- 
creased without increasing the redistribution time. This behavior is 
superior to that of the image partitions. where redistribution time 
increases as d and n increase and leads to the conclusion that object 
partitions scale well on 2D and 3D mesh network topologies. This 
scaling behavior is verified experimentally in the next section with 
tests run on the Touchstone Delta. 

The above analysis holds for a constant screen size. For very large 
data sizes it may be necessary to increase the screen size to prevent 
undersampling. If we adopt the convention that p’” = 2d ‘?, then 
the local image size at each node becomes a function of the data set 
size (4 d23 nmY3) and the total redistribution size is 

,nredisr ~ 4 d”” ,,‘I3 (II) 
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Substituting equation 1 I into the expressions for redistribution time 
yields 

12Dredis, ~ 4 d?/” (I - I/n) / (I .2 n”h C) (12) 

f3hcdist I4 du3 (I - l/n) / (I .2 n”3 C) 

When d and n are increased proportionately, these expressions ex- 
hibit the same asymptotic behavior as the image partition times 
given by equations 6 and 7, but for a given data set size. the redi;; 
tribution time of an object partition is lower by a factor of -(d/n) 
due to the local cornpositing that occurs before redistribution. 
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One disadvantage of object partitions is that load balance is diffi- 
cult to maintain when the view point zooms in to a portion of the 
data set; potentially. only one node’s data subset is visible making 
it rcsponsiblc for rendering the entire image. Thcrc is a corre- 
sponding cast for image partition algorithms: when the view point 
reccdcs so that all the data falls into one node’s region. The appli- 
cation dictates the probability of either case occurring and thcrcforc 
may impact the selection of a parallel algorithm. 

5. Network Performance on Touchstone Delta 
The Touchstone Delta with its 2D mesh network is used to 

experimentally verify that, for a fixed screen size. the redistribution 
time decreases as the number of nodes increases. The test program 
mcasurcs only the redistribution time. it does no actual rendering of 
an image. The size of each node’s local image is computed, and the 
pixels are redistributed according to a randomly-interleaved static 
assignment of screen regions. The rcccivcd pixels are ignored by 
the destination nodes, so compositing times arc not included in the 
test times. Region assignments arc varied to test for sensitivity to 
any pattern of assignment. Twenty different assignments were test- 
ed and the variations in redistribution time are small (< 20%) and 
not repeatable. These variations arc likely to be due to network l/O 
traffic through the test partition from other user’s programs. (The 
Delta supports multiple users in separate mesh partitions.) The 
sensitivity to region assignments appears to be negligible. 

2 0.03 ‘B 3 .z 0.02 
u? 

2 0.01 

0 

1 

128x128 image +I 

Block partition 2x2x2 3x3x3 4x4~4 5X5X5 6x6x6 
Mesh dimension 3x3 6x5 8X8 12x11 15x15 
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Redistribution times are measured for three screen sizes and plotted 
in figure 9. An object partition with a block data distribution is 
mapped onto the smallest “near-square” 2D mesh with sufficient 
nodes. A square, or near-square mesh partition is used to maintain 
the largest bisection possible. The 3D to 2D mapping is simply 
done by enumerating the partition blocks in x, y. z-order and as- 
signing them lo the corresponding partition node number. For 
example, a 2~2x2 block partition tits into a 3x3 mesh with blocks 
(O.O,O), (0.0.1). (0.1 .O). , (I ,I ,I) assigned to nodes 0, I, 2. ., 7. 
respcctivcly. In this example case, the last node (node 8) is unused 
and doesn’t contribute to the test. Figure IO shows the rcdistribu- 
tion sizes for the test cases used for figure 9. These two graphs 
verify the predicted behavior - as n increases. the redistribution size 
also incrcascs. but the redistribution time decreases. 

6. Volume Rendering on Touchstone Delta 
An object partition volume rendering algorithm was implc- 

mented on the Touchstone Delta. The algorithm uses a contiguous 
block data distribution. Local images are rendcrcd by ray casting 
to provide perspective views. The performance of this implcmen- 
tation is tabulated in figure I I as the frame rates achieved for 
various data and system sizes. In all casts the screen size is 256’ 
pixels. The data sets are analytically generated from Gaussian 
point and line sources (sampled at different densities). The image 
rendered in all the performance tests is shown in figure 12. 

The Delta provides access to a frame buffer through an 110 node 
that feeds a HIPPI channel. Although the renderer assembles a 
complctc 256’ image in one node. it is not sent to the HIPPI frame 
buffer I/O node during thcsc tests since updating the frame buffer 
limits the frame rate to about four Hertz at this image size. 

Data size System 2” 3” 4’ 5’ 1-. 1 63 

I .8 2.9 2.7 5.0 
7; 

128s 1.6 2.6 2.5 4.2 5.1 

192’ 2.3 4. I 4.9 

Fig. I I - Touchstone Delta rendering performance 

(frames per second) 

Fig. I2 - lsosurface rendering of test data 
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From figure 1 I, it is apparent that although this performance is as 
fast or faster than any reported for general purpose mcssagc passing 
multicomputers. ray casting time on the nodes is the performance 
bottleneck. Performance scaling is very nonlinear due to the effects 
of the ray casting speedups. Note the slower frame rate oC the 4’ 
system rclativc to the 3’ system size and the low sensitivity to data 
size. This implementation uses adaptive sampling, adaptive ray 
termination. and an octree encoding of the minimum and maximum 
data value in each octant [Wilhelms’90]. The cffcctiveness of the 
speedups vary for diffcrcnt data block sizes and numbers. The 
nodes perform adaptive sampling with the isoscelcs-triangle recur- 
sivc subdivision method [Shu+91] to render their local images. 
Each node constructs a unique octrcc for its data block. The octrcc 
“fit” of the features in the data will vary with the block dimensions 
and placement. Adaptive ray termination only effects local image 
rendering, so as the depth complexity of the partition goes up and 
the data blocks get smaller its effectiveness diminishes. This effect 
also occurs in object partition algorithms that use ray casting with 
adaptive ray termination on Pixel-Plants 5 [Yoo’91]. Although 
adaptive ray termination becomes less efficient as the number of 
blocks (and nodes) increases, its low computational overhead 
makes it worthwhile in all the cases tested. 

Since the focus of this paper in on the redistribution costs of paral- 
lel algorithms, and not on rendering methods. the reader is referred 
to [Ncumann93] for further details about the isosurface shading and 
load balancing used in the DELTA implementation. The implc- 
mentation is described here only to illustrntc a cast where an object 
partition algorithm succeeds in reducing the redistribution costs to 
an insignificant Icvcl. A 6? system computes a 256’ image in about 
200 ms. The measured rcdistrihution time for the same case is 
about IO ms. - only five percent of the total frame time. 

7. Summary and Discussion 
Parallel volume rcndcring algorithms inherently rcquirc com- 

munication of data independenl of the rendering method used at 
each node. The data redistribution sizes for three classes of parallel 
algorithms are derived from analysis and simulations. A network 
model is used to predict the time required for redistribution on 
mesh networks. The class of object partition algorithms with con- 
tiguous block data distributions exhibits the lowest redistribution 
time of any algorithm and scales well on mesh topologies - for a 
fixed image size. the redistribution time decreases as the data and 
system sizes increase. This scaling behavior is vcrificd by tests on 
the Touchstone Delta. An implcmcntation of an objec1 partition 
algorithm is presented for the Touchstone Delta. For images of size 
2 256’, frame rates arc not limited by the network performance, but 
rather by the recons1ruction and rcsampling required to render local 
images. The modest bandwidth (20 Mbytclscc peak) of the com- 
munication links in the Delta are sufficient for an object partition 
algorithm to perform at real time (> 20 Hz.) rates. Unfortunately, 
the rendering speed of the nodes is too slow to produce local im- 
ages at those ra1es. 

Further rendering speedups and hardware accelerators are clearly 
important arcas of future rcscarch. A large portion of software 
rendering time is consumed to reconstruct and resample the 
volume. Hardware accelcralion of this process is possible with the 
3D texture hardware provided on new graphics systems 
[Cullip’93]. If similar hardware wcrc available on multicomputer 
nodes, real time volume visualization of large data sets would bc 
possible. 

When ray casting is used as the rcndcring method for an image 
partition algorithm, the efficiency of adaptive ray termination is 
prescrvcd. As a result, implemenlers frequently report more linear 

speedups than those in figure I I. Despite this advantage. imple- 
mentations on message passing multicomputers suffer from the 
high latency of remote memory accesses [Corrie+92] [Yoo’92] 
which makes redistribution time significant and lowers overall per- 
formance below that given in figure I I. A low latency network is 
necessary for ray casting to be efticicnt in an image partition algo- 
rithm; such a network is provided on the Stanford DASH 
[Nich’92] and results in the highest reported frame rates for a gen- 
eral purpose multicomputer - 48 nodes render a 209’ image of a 
128” data set at over IO rrames per second. This figure is quoted for 
an isosurface rendering mode which is the cast where adaptive ray 
termination is most effective in reducing the rcndcring time and 
redistribution size. Such performance has not been achieved on 
message passing systems with high latency networks. 
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