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Abstract

In Augmented Reality (AR), a user can see a virtual world as well as a real
world. To avoid the registration problem between the virtual world and the real
world, the user’s pose in both worlds should be exactly the same. Fiducial
tracking AR is an attractive approach to the registration problem, but most of
the developed fiducial tracking AR systems have very limited tracking ranges
and require carefully prepared environments, especially lighting conditions. To
provide for wide views and detailed views in large-scale applications, an AR
system should have a scalable tracking capability under varying light condition.

In this paper, we propose multi-ring color fiducial systems and a light-
invariant fiducial detection method for scalable fiducial tracking AR systems.
We analyze the optimal ring width, and develop formulas to obtain the optimal
fiducial set with system specific inputs. We present a light-invariant circular
fiducial detection method that uses relations among fiducials and their
backgrounds for segmenting regions of an image. Our work provides a simple
and convenient way to achieve wide-area tracking for AR.
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1 Introduction

In Virtual Reality, where all scenes are computer-generated images, a virtual
world could be explored by flying or steering treadmills without the same
physical movements. In Augmented Reality (AR), a user sees a virtual world as
well as a real world. To avoid the misalignment between two worlds, the user’s
pose in the real world is directly related to the user’s pose in the virtual world
and AR requires the same amount of movement in both worlds. To apply AR to
large-scale applications, wide-area tracking is essential.

An overlapped virtual world contains virtual objects to help understand a real
world [Azuma95]. To make the virtual world useful, the virtual objects should



be aligned properly with the real objects. Registration is one of the major issues
in AR [Azuma94][Bajura95][Tuceryan95]. The registration problem requires
high accuracy or error-correction mechanisms in tracking. Fiducial tracking has
been gaining interest as a solution to the registration problem [Mellor95]
[Neumann96][State96][Cho97].

1.1 Motivation

The tracking range of a fiducial tracking AR system is confined by the
detectability of fiducials in input images. Most of the developed systems use
their own single-size fiducials. A single-size fiducial might help fast fiducial
detection, but the system will have a narrow tracking range because all fiducials
have the same detection range.

In a large-scale application with details, an AR system should provide wide
views as well as detailed (zoom in) views of interesting regions. The developed
AR systems, which use single-size fiducials, do not seem to provide such
scalability. Different size fiducials will have different detection ranges, and by
combining a series of different detection ranges from multi-size fiducials, a
whole tracking range can be extended seamlessly.

Fiducial tracking AR systems detect fiducials using image processing or
computer vision techniques: boundary detection, color segmentation, watershed,
and template matching techniques. These methods require thresholds to segment
an image and to detect fiducials, and often can not be used under different
lighting conditions without changing thresholds. Since most of the developed
fiducial tracking AR systems adopt these detection methods, they seem to
require carefully prepared environments including light conditions, and their
usability are very limited. To apply AR to a large-scale application, we need a
detection method that works under any lighting conditions without manually
controlling any parameters, including uneven lighting condition in one image.

1.2 Contribution

We add the multi-ring multi-size concept to the concentric circular fiducials,
and introduce a fiducial system concept. This fiducial system concept provides
great scalability to fiducial tracking AR. The fiducia systems introduce a much
larger number of unique fiducials than a single-size fiducial system, and make
fiducia identification much easier. We develop formulas to calculate the
optimal fiducial set for any size of applications with some system specific
parameters. Users conveniently get the optimal fiducia set by just plugging in
those parameters according to their systems.

We develop a robust fiducial detection method under varying lighting
conditions, using light-invariant relationships among homogeneous regions
instead of thresholds for segmenting regions. We also develop rules and
membership functions to detect fiducials.

We present a simple and low-cost way to achieve wide-area tracking, and we
hope that this work trigger many research activities in large-scale applications.



2 Previous works
2.1 Fiducial tracking

There are several developed fiducial tracking AR systems. Most of them
have used solid or concentric circular fiducials [Mellor95][Neumann96]
[State96][Cho97], and a few of them have used the corners of big rectangles as
fiducials [Kutulakos96][Koller97]. All of them have adopted single-size
fiducials or rectangles, and their tracking areas are limited to just around a
desktop or the opposite wall of a room (Fig. 1). None of them seems to support
full room (~30x30 feet) tracking from arm-length distance to wall-to-wall
distance.

Figure 1. An example of AR screen

2.2 Fiducial detection

Several AR systems have been developed using vision-based techniques.
Some authors mentioned their approaches that deal with different lighting
conditions while others do not give any information relating the environment
restrictions under which their systems work.

Madritsch, Leberl, and Gervautz [Madritsch96] developed a camera-based
beacon tracking system. They use red LEDs as beacons and accept lighting
restrictions for their system.

State, Hirota, Chen, Garrett, and Livingston [State96] developed a hybrid
system which combined a vision-based tracking system and a magnetic tracking
system. The basic algorithm to detect fiducials is based on the ratios of RGB
component values. They used the system under restricted lighting conditions,
and mentioned that the fiducial analyzer’s performance diminished with
changing lighting conditions despite the use of adaptive brightness evaluation
for each landmark.

Uenohara and Kanade [Uenohara95] mentioned the appearance of objects
varies in many ways depending on pose and illumination change. They require
users to locate objects at the initial recognition step. Normalized correlation and
precaptured images are used to operate the system under varying lighting
conditions. The complexity of the detection algorithm increases as objects
become more complex and more reference images are required.



As we see from the above three systems, vision-based AR systems need a
fiducial detection algorithm, and the performance of detection algorithms
diminishes when lighting conditions vary. We develop a rule-based algorithm to
detect fiducials with varying lighting conditions. The idea behind the algorithm
is to use relations among homogeneous regions instead of using threshold values
for segmenting regions.

3 Multi-ring color fiducial system

The 2D image location (u,v) of a 3D point (x,y,z) is determined by the

following perspective projection.
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where f, and f, are the effective focal lengths of a camera in the u and v
direction, respectively, and (Uy,V,) is the image center. R is the rotation matrix
and T is the translation vector for the camera pose. The major axis length d of
the ellipse is

d=Df /w,

where D is the diameter of the fiducial, f (= f, =f,) is the effective focal length,
and w is the depth of the fiducial in the camera coordinate system.

When a camera is too far or too close to a fiducial, the projected image of the
fiducial in the input image is too small or too large to detect it correctly.
Therefore, an AR system with single-size fiducials has a very limited tracking
range. Although each fiducial has a fixed detectable range, the whole tracking
range could be extended by combining different detectable ranges of different
size fiducials.

Multi-ring color fiducials have different number of rings at different size
levels. The first level fiducial has one core circle and one outer ring. As the level
goes up, one extra ring is added outside of the previous level fiducial. The
number of rings in a fiducial tells the fiducial level where it belongs. The core
circle and rings are painted with six colors (red, green, blue, yellow, magenta,
and cyan). It introduces many unique fiducials and, it makes fiducial

identification easier.
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First level Second level Third level
Figure 2. Multi-ring multi-size color fiducials



In the proportional width ring fiducial system, the size ratio ¢ between

adjacent levels is the same.
Di=cDi-1 (c>1)
=c¢'Ds

where D; is the diameter of the level i fiducial. Because the outer ring is wider
than the inner ring, the outer ring is more easily detectable from a distance. The
higher level fiducials have a farther detectable range. By combining those
detectable ranges, we can extend the whole tracking range. This fiducial system
is good for wide-area tracking with arbitrary camera movements.

Let the desired tracking range be Zear ~ Zsar, and the camera focal length be f.
Let w be the minimum detectable ring width in an input image. w depends on the
camera, the digitizer, and fiducial detection algorithm.

3.1 Number of required levels
Let the tracking range of a level i fiducial be Zneri ~ Zsar,; With the conditions
Zear = Zneari and Zeyen = Zgyr. The largest detectable fiducial size in an image is
Onear (? Dif/Zeari), and the smallest detectable fiducial size is der (£ Dif/Zty ).
To combine the detectable ranges smoothly, there should be no gap between
adjacent work ranges.

O £ Zsar,i - Znear,i +1£ Dif (dnear -C
near dfar
r Z i
cE Ohea and c£ far,
far Znear,i

The required levels of fiducials can be expressed as a function of the size
ratio ¢ (Fig. 3).
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Figure 3. Fiducial levels

3.2 Fiducial size at each level



When the camera is at Zg,,; from a level n fiducial, the major axis length of
the level 1, 2, and j rings in an input image are

drar1 = Z—WC ? drar
c-1

d2= 2—WC2 £ dnear,2 £ Ohear

c-1
g=2Yci g jen)
c-1

The diameters of the level 1 and n fiducials are

Zsar Ziar 2W
n = dfar = _—
f c-1
Di= Znear rear ? Ziar 2W 2.
c-1

Figure 4 shows the major axis lengths of some fiducial levels, and the
minimum and maximum fiducial sizes as a function of c.

(a) Fiducial sizes in an image (b) Real fiducial sizes
Figure 4. Fiducial sizes

3.3 Fiducial distribution

When a camera is close to fiducials, the camera can see only a small region
in the real world, and only small size fiducials can be detected. When the camera
is far from fiducials, it can see a large area, and only large size fiducials can be
detected. Therefore, lower level fiducials have dense distributions and higher
level fiducials have sparse distributions.

Fiducials are usually distributed around interesting regions without any
regular pattern. For analysis purposes, we use a regular grid distribution. We
assume that the input image has WxH resolution (W 2 H).

To determine the camera pose, three or more non-collinear fiducials are
required in an input image [Linnainmaa88][Horaud89][Haralick94]. Figure 5(a)
shows an input image of level i fiducials at distance Zper;. With this
configuration, any camera pose can see three or more fiducials in the valid
tracking range of level i. The inter-fiducial distance for level i fiducials L; is

Li(C) - H - dnear ” Di
2
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(a) Input image of the level i fiducials at  (b) Inter-fiducial distance at level 1 and
distance Z,,; n, and fiducial density f(c)
Figure 5. Fiducial distribution

The ratio of the fiducial diameter over the inter-fiducial distance shows the

fiducial density.
Di 4c’w
f(c)_E_ H(c-1)-2c*w

Figure 5(b) shows the inter-fiducial distances and fiducial density in

percentage form.

3.4 Optimal size ratio ¢

All results come out as functions of the size ratio c. Which ¢ gives the
optimal results? We can think of the optimality in two aspects: system
performance and fiducial sizes.
For high system performance, fiducial detection process should be fast. We can
concentrate on the performance of finding the smallest detectable ring in a
fiducial, because the larger rings could be found easily by predicting their
boundaries with ¢. The fiducial detection algorithm should look for rings whose

diameters are in the range from dfar(:%C) to dnear(? 2—W102). To minimize
- C-

the processing time for fiducial detection, f(C)=(dnear - Ofar)diar Should be
minimized. (dnear - drar) 1S the search range, and ds,, is the search size. The bigger
ds.r is, the more processing time for boundary detection.

f (C) = dfar(dnear - dfar) = 2W2 C2

df (c) _ 4w’c(2- ¢)
Tde (c-17?
f(c)=(dnear - diar)diar has minimum when ¢ = 2.

The other aspect is fiducial size. If fiducials are too big, it is not easy to find
proper places to put them on. They also occupy a large area in the input images.
So, we can get the optimality by minimizing the fiducial density.

df () _  4cwH(c-2)
dc ~ (H(c-1)-2c?w)>?

f(c) has the minimum 16w/(H - 8w) when c=2.




From both aspects, the optimal size ratio c is the same value 2.

4 Fiducial detection

We are only interesting in fiducials in an image, which occupy very small
areas of an image, so we apply a multi-resolution approach to reduce execution
time of our detection algorithm. The detection algorithm is divided into two
stages, coarse detection and finer detection (Fig. 6). Coarse detection quickly
skims through an image and finds potential regions, and more expensive
method, finer detection, is applied to detect possible fiducials. Then shape and
color tests are applied to distinguish false fiducials from real fiducials. Coarse
and finer detection methods share two steps, assigning membership values and
creating line segments. They differ in two ways. One is the coarse detection
finds potential regions using only sampled horizontal and vertical scan lines, but
the finer detection uses all horizontal and vertical scan lines in small selected
regions to detect possible fiducials. Second difference is the coarse detection
clusters cross points created with horizontal and vertical line segments, but the
finer detection clusters line segments segmented along horizontal and vertical
scan lines. Clustering used at coarse and finer detection are done based on
locations and colors of cross points or line segments. The bases of the algorithm
are rules and fuzzy algorithms. Rules are used for detecting transition areas
between a fiducial and its background, and fuzzy algorithms are applied to
localize the position of edges. Detail of the algorithm is presented at following
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sections.

4.1 Coarse detection

Potential regions are detected by the coarse detection procedure. The coarse
detection procedure utilizes that cross points are created by horizontal and
vertical line segments inside a fiducial if a sampling interval is carefully
designed. Clusters of cross points create potential regions for a finer detection
procedure.

s= i whered isthe size of minor axis of the smallest fiducial

V2
Sampling Interval(SI) =%

The sampling interval is the most important parameter used in the coarse
detection procedure. Small sampling interval increases computation time, and
large sampling interval may miss few fiducials. We create a potential region
with a cluster that contains at least one cross point, but we use sampling
intervals that create at least four cross points for each fiducial without any noise
on an image. This improves robustness even if it increases computation time.
Intersections among sampled horizontal and vertical lines form square grids, and
one square grid contains four cross points. If grids are contained within the inner
square (d equals the size of minor axis) of the expected minimum fiducial, there
are at least four cross points inside every fiducials (Fig. 7). We can derive the
size of the inner square of the smallest fiducial of an image from the minor axis
of the smallest fiducial. Then the optimal interval can be computed using a
following equation. A sampling interval is adaptively changed according to the
size of minor axis of the smallest fiducial of the previous image.

@ (b)

Figure 7. Maximum Sampling Interval (a) circle (b) ellipse

For every sampled horizontal and vertical lines, we assign a membership
value to every pixel of them. All lines are segmented according to membership
values of individual pixels, and these line segments create cross points if two
line segments intersect and have the same color. We cluster cross points
depending on their positions and colors, and each cluster defines one potential
region for a finer detection procedure. A priority is assigned to each potential
region according to the number of cross points in a cluster after eliminating
clusters with a larger size than the maximum fiducial size.

4.2 Finer detection



Select the region with the highest priority from the possible regions. We
assign a membership value to every pixel of all horizontal and vertical lines
inside the selected region, and create line segments along all scan lines based on
membership values. These line segments are clustered according to their
locations and color, and clusters of line segments are possible fiducials. Sub-
procedures of both detection steps are presented at following sections.

4.3 Rules and membership functions

Edge detection techniques using a fuzzy logic method usually use S and p
functions as a membership function. These techniques require threshold values
and prior knowledge about an input image such as a number of regions on the
image to segment regions of an image so we can not apply general membership
functions to achieve our goal. We develop the membership function to find the
best edge position inside the transition region that is found by applying rules.
This is possible because we are looking for the specific fiducials.
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Figure 8. Step edge model
The characteristics of fiducials are the minimum distance between two

fiducials, the minimum and maximum size of a fiducial, and the shape of a
fiducial. We also know fiducials are placed on solid backgrounds. This means
interesting edges are located between two homogeneous regions (Figure 8). We
can extract few rules and membership functions from relations existing between
homogeneous regions. These rules eliminate nearly all false edges in an input
image, and membership functions locate the best positions for edges. The best
location for an edge is a pixel location whose intensity is the same as the
average value of left and right segments of an edge. Rules and membership
functions are as follows.

1) Avg(R) > Avg(C) > Avg(L) or Avg(L) > Avg(C) > Avg(R),
where Avg(J) is an average intensity value of a region J.

2) Max(C) — Min(C) > Max(R) — Min(R) & Max(C) — Min(C) > Max(L) —
Min(L), where Max(J) and Min(J) indicate the maximum and minimum
intensity values of a region J.

3) Intensity value distribution of regions R and L can not be overlapped.

4) Membership functions are defined by following equations.



m= nl« 2
= 2« Min(Avg(R)— Avg(T ) |Avg(L)- Avg(l’})
|avg(R)- Avg(L)

_ Min(R)- Max(L)

m2 m, Avg (R)> Avg (L)
o = Min(L)- Max(R)1AVg(L)> AvgR)

MaxiL i- MiniR D
The membership function contains two parts, m and m. m indicates a grade of
closeness to the median intensity value between two regions. m = 1, if A(C) =
|A(R) = A(L)] / 2, and m < 1 for other cases. m indicates the grade of closeness
to the ideal edge. If an edge is the ideal edge, (Min(R) — Max(L)) = (Max(R) -
Min(L)) or (Min(L) — Max(R)) = (Max(L) — Min(R)), and mp = 1. m is less than
1 for other cases. Therefore the membership function mis used to find a position
of an edge that is close to the ideal edge.

4.4 Detect line segments

Collect pixels from each horizontal scan line that pass all rules listed above.
Group these pixels which are connected without crossing a pixel which does not
pass all rules. From each group select one pixel with the highest membership
value that indicates the best location of an edge. Then connect selected pixels to
create line segments.

4.5 Cluster line segments

Each fiducial has a solid color, so we can find a position of a fiducial by
clustering line segments with the same color. Unfortunately, however, every
image contains noise. For example, a region with a solid color has pixels with
different color values. This introduces a similarity measure. Traditionally
similarity is measured with a distance metric and a threshold. Possible distance
metrics used for a color similarity include absolute distance (e.g., Manhattan
distance, Euclid distance), 1-norm distance, 2-norm distance, ¥ -norm distance,
angle between colors in the RGB color cube, and square of cosine of color
angle.

These metrics require thresholds to decide whether two color values are
similar. Defining a threshold that works for varying lighting conditions is
difficult because color values are changed depending on lighting conditions.
Therefore we developed a similarity measure which uses the probability theory
and which utilizes local information existing on line segments. A uniform
probability density function is created for each line segment, and two line
segments are considered having the same color when two uniform probability
density functions are overlapped. This is possible because a color similarity is
checked when two line segments are next to each other, and fiducials and their
background have different colors. The distribution of a region is defined by the



minimum, average, and maximum values of a region. Find D, MIN(JAQJ) -
Min(J)|, |JAQJ) — Max(J)|), and create a uniform distribution by A(J) — D and A(J)
+ D. Since we choose MIN(JA(J) — Min(J)|, |JAQJ) — Max(J)|) as D, effects of
noise pixels can be eliminated, and it is used to define a uniform density
function to represent an intensity distribution of a region. This simple density
function works well for our detection algorithm, and it reduces the computation
time of clustering procedures.

5 Result and discussion
Our implementation has the following configuration:

SGI Indy 24-bit graphics system with M1PS4400@200M Hz

- SONY DXC-151A color video camera with 640x480 resolution, 31.4° in
horizontal and 24.37° in vertical FOV, S-video output

- The three level proportional fiducial set with six colors (red, green, blue,
yellow, cyan, and magenta). The diameter of the first level fiducialsis 17,
the second level 2", and the third level 4”.

The smallest detectable ring width of our implementation is 7 pixels. We
search rings with 24 ~ 56 pixels in diameter. The detection range of the first
level fiducia is 1.7 — 3.9, the second level 3.3 ~ 7.7, the third level 6.6' ~
15.4'. Therefore, the whole detection rangeis 1.7 ~ 15.4'. Figure 9 shows three
snapshots of detection results from typical distances for the three levels under
uneven lighting conditions. The detected fiducials are marked with white cross
hairs at the centers.

The system performance depends on the number and size of the potential
fiducialsin an image. The current implementation does not use any prediction of
fiducial positions, but skims the whole image every time. Even a linear

D IEEE

(a) Distance 3 feet - All
three level fiducials are

(b) Distance 6 feet - The (c) Distance 12 feet — Only

second and third level the third level fiducials are

detected fiducials are detected detected
Fiducial Diameter | Theoretical | Snapshot | Frame rate
level (inch) tracking distance (FPS)
range (feet) (feet)
First level 0.8 1.5-3.7 3, () 1.0
Second level 1.6 3.0-74 6, (b) 1.5
Third level 3.2 5.9-14.8 12, (¢) 2.0

Figure 9. Detection results. The detected fiducials have a white cross




prediction could improve the system performance by reducing search areas for
the coarse detection.

As Fig. 9(a) shows, large fiducials could be detected at close distance.
Although awhole fiducial istoo large in the image, one of the small rings in the
fiducia might be detected. After finding one ring, we can predict and find outer
rings easily, because the fiducial system uses a proportional ring width.
Eventually the whole fiducial could be detected. Therefore, in the multi-ring
fiducial system, large fiducials could be used at close distance. With the same
reason, the partially visible large fiduciadls are also detected. These are
advantages of the multi-ring fiducial system.

We use two lighting sources (daylight and fluorescent light), and different
apertures of a camera to simulate different lighting conditions. The algorithm is
tested on images with different backgrounds and apertures, f = 1.8 ~ 8.0. The
backgrounds of fiducials are small regions around fiducials (Fig. 10). The
algorithm is also tested on live video sequence after it is integrated into the
existing AR system. Our detection method is compared with the gradient-based
detection method used for the current AR system [Cho97]. The gradient-based
detection method detects most fiducials correctly with f = 2.0 ~ 4.0. The
presented algorithm detects all fiducials under every aperture settings except a
yellow fiducials on white background at f = 1.8 and a green fiducial on black
background at f = 8.0 and 5.6 (Table 1). Undetectable fiducials are not easily
perceived by human eye either.

Homogeneous
boundary
regions

Figure 10. Defines a background of a fiducial. b is the size of a
homogeneous boundary region considered as a background of a fiducial

This presented fiducial detection algorithm is robust with varying lighting
conditions, and it is unique in that it uses rules and membership functions
extracted from relations among fiducials and homogeneous backgrounds. The
algorithm detects fiducials without the need for any human intervention under
varying lighting conditions, including uneven lighting conditions in one image.
The algorithm extends the usability of vision-based AR systems quite a bit since
the AR system with the presented algorithm can be used under varying lighting
conditions.

Fiducials are distributed on the interested objects and/or environments in a
real world. The number of fiducials in the real world depends on an application
size. For a full room (30'x30’) tracking, there might be tens or hundreds of
fiducias in the room. Because of FOV of a camera, the camera can see only a



part of the room, and each input image will contain only a few fiducials. To
determine the camera pose, correspondence between the rea fiducials and the
image fiducials should be established. Thisis our future research direction.
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Aperture (f) 4.0 28 | 4.0

Lighting source Day light Fluorescent light

R: Red, G: Green, B: Blue, Y: Yellow, C: Cyan, and M: Magenta

Table 1. Results of fiducial detection algorithm.
(Y indicates detection and N indicates no detection.)
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