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Abstract 
 

A new feature descriptor is presented for object and 
scene recognition.  The new approach, called CDIKP, 
uniquely combines the scale-invariant feature 
detection with a robust projection kernel technique to 
produce highly efficient feature representation.  The 
produced feature descriptors are highly-compact in 
comparisons to the state-of-the-art, do not require any 
pre-training step, and show superior advantages in 
terms of distinctiveness, robustness to occlusions, 
invariance to scale, and tolerance of geometric 
distortions. We extensively evaluated the effectiveness 
of the new approach with various datasets acquired 
under varying circumstances. 
 
 
1. Introduction 

Local features with invariant descriptions are 
important for many tasks in computer vision and 
object recognition, including object and scene 
recognition, wide baseline image matching and 
registration, and content-based image retrieval.  In a 
feature based approach, the images are transferred into 
a set of highly-distinctive local features, each 
representing a quasi-independent salient region of 
object within the scene.  The features are represented 
with robust visual descriptors to capture both 
structural and appearance properties of scenes that are 
largely invariant to imaging and viewing variations.     

There are a number of local features and invariant 
descriptors that have been proposed for various visual 
recognition tasks.  Features can be extracted in single 
or multiple scale(s), and either densely, at random, or 
sparsely according to local informativeness of scenes. 
For example, the Harris detector that is based on the 
auto-correlation of image is often used for finding 
local features.  Mikolajczyk and Schmid [1] combined 
the Harris detector with automatic scale selection to 
detect distinctive feature that is scale-invariant.  Lowe 
[2] proposed to extract salient features using local 3D 
peaks detected in a Difference-of-Gaussian (DoG) 
pyramid.  There are a number of other state-of-the-art 

detectors that find scale- or affine-invariant local 
features and salient regions [3].    

Many methods for feature descriptions have been 
suggested, which can incorporate various degrees of 
resistance to common perturbations such as viewpoint 
changes, geometric deformations, and photometric 
transformations.  Among the approaches, the SIFT 
descriptor has been shown to outperform other 
descriptors [4].  The SIFT descriptor is based on the 
gradient distribution in salient region, and constructed 
from a 3D histogram of gradient locations and 
orientations.  A 128-dimension vector representing the 
bins of the oriented gradient histogram is used as 
descriptor of salient feature [2]. 

 However, the high dimensionality of SIFT 
descriptor is a significant drawback, especially for 
online or large-scale dataset applications.  For a 
typical outdoor scene, for example, the SIFT usually 
produces several hundreds of local features, yielding a 
large high-dimensional feature space needs to be 
searched, indexed, and matched.    

Several researchers have addressed the problem of 
dimensionality reduction for feature descriptors.   For 
example, Herbert et al [5] proposed an approach 
(SURF) that combined the Hessian matrix-based 
measure for the detector and Haar-wavelet responses 
for the descriptor, resulting in a 64-dimension feature 
representation.  PCA-SIFT proposed in [6] reduced the 
dimensionality of descriptor to the range of 36, while 
remaining a comparative performance to the original 
SIFT.  The key of PCA-SIFT is to apply the standard 
Principal Components Analysis technique to the 
gradient patches extracted around local features, 
therefore yielding a compact feature representation. 
However, the PCA-SIFT needs an offline stage to train 
and estimate the covariance matrix used for PCA 
projection.  This typically requires the system to 
collect and train a large, diverse collection of images 
prior to use, (it often needs to re-train and re-estimate 
the covariance matrix when the image database is 
expanded or the scenes have significant changes), 
thereby impeding its widespread use and benefits.  

This paper presents our efforts in developing an 
efficient local feature and its invariant descriptor for 



scene recognition.  Our main contributions lie in a 
novel approach that uniquely combines the scale-
invariant feature detection with a robust kernel-based 
representation technique to produce highly efficient 
feature representation. We named the approach 
Compact Descriptor through Invariant Kernel 
Projection (CDIKP).  The produced feature descriptors 
are highly-compact (20-Dimension) in comparisons to 
the state-of-the-art (e.g. SIFT: 128-D, SURF: 64-D, 
and PCA_SIFT: 36-D), do not require any pre-training 
step, and show superior advantages in terms of 
distinctiveness, robustness to occlusions, invariance to 
scale, and tolerance of geometric distortions.   

2. Approach  
Figure 1 depicts the main steps of our approach, 

which are detailed in following sections. 

2.1. Scale-invariant Feature Detector 
  Our approach selects multi-scale salient 

features/regions with the scale-invariant detector [2] 
where 3D peaks are detected in a DoG scale-space.  
The peaks in a DoG pyramid have been shown to 
provide the most stable interest regions when 
compared to a range of other interest point detectors.   

Three spatial filters are used in the detector.  First, a 
high frequency-passed filter is employed to detect all 
the candidate features with local maximum responds 
in the DoG pyramid. The second filter is a 
distinctiveness filter that removes the unstable features 
usually lying along the object edges or linear contours.  
The third filter is an interpolation filter that iteratively 
refines the feature locations to sub-pixel accuracy.  
Finally, the dominant orientation and scale are 
computed and assigned to each detected feature.  The 
dominant orientation and scale will be used for view 
normalization to achieve viewpoint invariant.  Figure 2 
shows an example of the detected salient features.  

2.2 Kernel-based Feature Descriptor 
Discrimination power is an important factor 

required for object recognition with high data 

variability.  We base our feature descriptor on a 
projection kernel scheme, because the projection 
kernel techniques have demonstrated strong 
discrimination performance and they are well-
established analytical tools that are useful in variety of 
contexts including discriminative classification, scene 
recognition and categorization.  Another attractive 
feature of the projection kernel techniques is their 
innate data compaction that can efficiently map high-
dimensional data to a compact representation with 
much lower dimensionality.  This is a very attractive 
property for image description from which we could 
produce compact, lower-dimensional descriptors.  

Choosing an appropriate kernel function is a key 
for efficient projection kernel schemes.  Two 
important factors have to be considered: the kernel 
functions should be ordered in a way such that the 
lower bound becomes tight after only a small number 
of projections, and the kernels should be efficient to 
enable fast computation [7, 8].  

2.2.1 Walsh-Hadamard Kernel  

We decided to use Walsh-Hadamard (WH) kernel 
because of its good performances in discrimination 
and computational efficiency.  Mathematically, the 
WH kernel vectors can be recursively constructed as 
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Therefore, the elements of WH kernel vectors are 
orthogonal and made up entirely of 1 and −1.  
Computation of the WH transform involves only 
integer additions and subtractions.  Given an image 
patch of size ݇ ൈ ݇, its WH transform is computed by 
projecting the patch onto ݇ଶ WH kernel vectors.  It has 
been shown in [7] and also confirmed by our 
experiments that the first few WH projection vectors 
can capture a high proportion of information contained 
in the image (Figure 3).  These unique properties of 
WH kernel projection lead us an efficient tool to build 
compact descriptors.  
 

Fig 1: Algorithm structure 

 
Fig 2: Detected salient features with feature 
locations, dominant orientations, and scales 



2.2.2 Generate Descriptors with WH Projections 

WH kernel projection, however, does not naturally 
have the important property of geometry invariance, 
thus it cannot handle geometric distortions caused by 
viewpoint or pose changes.  We solve this problem by 
performing a viewpoint normalization step on the 
basis of the feature’s dominant orientation and scale.   

Constructing the canonical views of features is 
relatively simple and fast.  We first extract local 
patches centered at the feature locations from the 
Gaussian pyramid constructed in the above step of 
feature detection.  The size of patch varies with the 
scale at which the feature was detected.  Under the 
assumption of local planarity, a new canonical view of 
the local patch (with fixed size and scale) is 
synthesized by image warping with the feature’s 
dominant orientation and scale.  This corresponds to a 
regular re-sampling process in an affine space.  Note 
that the size of the canonical patch is fixed and has to 
be in the power of 2, as required by WH transform.  
Our extensive experiments show that the size of 
32 ൈ 32 gives the optimal results (Figure 4). 

To reduce the effect of photometric changes, we 
use gradient for each patch in WH transform.  We 
have evaluated several gradient computation and 
forms, and found that the Gaussian weighted first-
order derivatives of pixel intensity along horizontal 
and vertical directions seemed to yield the most robust 
results to compensate the substantial changes of 
illumination.  Thus, we first calculate the first-order 
derivatives in ݔ and ݕ directions within a local patch, 
and then weight the directional derivatives using a 
weighted Gaussian kernel: ݏݏݑܽܩ ሺߪ, ݀ሻ ൈܹሺ݀ሻ, 
where ܹሺ݀ሻ ൌ ሺ1 െ ݀ሻ/ሺௌ

ଶ
ሻ , ߪ  ൌ  ܵ/2, ݀ is the 

relative distance between current pixel to the center of 
the patch, and ܵ is the patch size.  In this way, we 
obtain a pair of gradient maps ݒ௫ and ݒ௬ for each local 
patch which is canonically normalized to viewpoint 
and photometric variances.  

We then use the WH kernel projection to extract 
significant components contained in the local patches 
to generate feature descriptors.  Since we obtain two 
1024-element gradient maps ݒ௫ and ݒ௬ for each 
patch/feature, we apply the WH transform twice to the 
gradient maps: one for ݒ௫ and one for ݒ௬.  Finally, the 
first 10 projection vectors of each WH transform are 
extracted and combined to produce a 20-dimension 
feature descriptor that is compact, distinctive, and 
viewpoint and illumination invariant. 

 
Fig 3: Impact of the lengths of WH projection 
vectors on feature matching.  Note: KP-8 means a 
8-dimensional feature descriptor, in which the first 
4 projection vectors of WH transform are extracted 
separately for x- and y-component of an image 
patch, and then combine them to produce the 8-
dimensional descriptor 

 
Fig 4: Impact of patch sizes on feature match 
performance 

(a)                                                  (b)                                             (c)                                              (d) 
Fig 5: Performance evaluation under different imaging and viewpoint variances 



3. Experimental Results 
We have extensively tested and evaluated the 

proposed approach using various datasets including 
synthesized data, a standard evaluation set, and our 
own datasets acquired under varying circumstances.  
We evaluated the effectiveness of our approach, in 
comparison to other descriptors, in the terms of 
distinctiveness, robustness and invariance.  Due to 
space limitation, we cannot present all the data in this 
paper.  The extensive results will be provided upon 
request.  We are also planning to release the algorithm 
code for public evaluation.   

3.1 Synthesized Data Evaluation 
We collected a dataset of images and intentionally 

distorted them with various geometric and photometric 
transformations.  For a pair of test images, we ran the 
CDIKP algorithm to automatically select distinctive 
features, generate descriptors, and find the feature 
matches.  The results were evaluated using the metric 
of recall-precision graphs, as in [4, 5, 6]. We 
conducted performance comparisons to standard SIFT, 
and PCA-SIFT.  In our tests, we tried to use the same 
set of parameters (e.g. pyramid levels, filter sizes, and 
thresholds) for all the three methods.   

Figure 5 shows results of the CDIKP approach to a 
scene under different distortions, where (a) is the 
matched features for the original image being rotated 
70 degree; (b) for 250% scaling; (c) for 0.4-x, 0.1-y 
shearing; and (d) for 100% illumination change and 
adding 15% Gaussian noise.  

3.2. Standard Test Dataset with Ground Truth 
We tested our approach using the INRIA dataset 

[4].  These are images of real scenes with recovered 
deformation parameters used as test ground.  Figure 6 
shows the results for several cases:  (a) rotation and 
scale (Boat), (b) viewpoint changes (Wall), (c) image 
blur (Bikes), and (d) lighting changes (Leuven). 

We can see from these results that the proposed 
CDIKP descriptor remains a very comparative 
performance, sometimes outperforms SIFT in recall 
for the same level of precision.  Meanwhile, it is more 
compact and efficient to compute. 

3.3. Scene Recognition Application 
We used the approach for object recognition 

application intending to the content-based image 
retrieval (CBIR) on mobile-platform.  Figure 7 
demonstrates a scenario of applying the approach to 
automatically localize and recognize various 
commercial logos in nature environments.  Note that 
the nature images were captured with a digital camera, 
and the logo images were downloaded online from the 
company websites.  The logo images are usually 

computer-generated graphics that have significant 
differences in geometry and colors with real images.  
These examples demonstrate the value of the proposed 
approach for mobile multimedia applications such as 
product advertising and shopping.   
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Fig 6:  Evaluation with INRIA test dataset [4] 

Fig 7:  Apply CDIKP to localize and recognize 
commercial logos in nature environments 


