
Fast Simultaneous Tracking and Recognition
Using Incremental Keypoint Matching

Jonathan Mooser, Quan Wang, Suya You, and Ulrich Neumann
CGIT Lab, Viterbi School of Engineering

University of Southern California
{mooser, quanwang, suyay, uneumann} @usc.edu

Abstract

This paper presents a unified approach to object recog-
nition and object tracking, combining local feature match-
ing with optical flow. Like many traditional recognition
algorithms, the one described here implements recognition
by matching detected image patches against a database of
known objects. This algorithm, however, matches keypoints
incrementally, meaning that it only tests a few keypoints at
each frame until the complete object is identified. Recogni-
tion and tracking thus proceed in real-time, even with high
dimensional features and an arbitrarily large database.

Central to this work is the system by which keypoint
matching and optical flow mutually aid one another. Key-
point matching recognizes an object and estimates its pose
in order to initialize tracking. Optical flow tracking, in turn,
maintains the object pose over subsequent frames, discard-
ing newly matched keypoints that do not fit with the cur-
rent pose estimation. Experimental results demonstrate that
this powerful combination provides robust, real-time recog-
nition and tracking of multiple objects in the presence of
scale and orientation changes as well as partial occlusion.

1. Introduction

Object recognition and object tracking are closely linked
problems in computer vision. Both often rely on similar
low level tasks such as keypoint matching and model fitting.
Moreover, the two often play complementary roles within a
larger system, with object recognition used to initialize and
re-initialize tracking.

The ability to reliably recognize an object and then track
its movements has numerous valuable applications. An au-
tonomous navigation system, for example, might determine
its location based on known objects within its field of view,
then adjust its course by tracking those objects. An aug-
mented reality application could display annotations based
on the objects it sees, using the objects’ positions and ori-
entations for accurate spacial rendering. Traffic monitoring

systems often seek to recognize and track vehicles. Security
systems may attempt to do the same with people.

The goal of our work is to tightly integrate recognition
and tracking into a unified system. We want to recognize an
object in real time within the first few frames of a captured
video, then track its pose through subsequent movements.
Rather than implement recognition as a separate initializa-
tion step, however, we treat it as an ongoing process that
both aids and benefits from tracking. Our strategy follows
two key intuitions:

• If keypoints can be reliably tracked from one frame to
the next, then matching results from multiple frames
can be combined to produce a more confident object
identification and a more robust pose estimation.

• Once we have enough keypoint matches to compute
an object’s pose, we can infer the locations of all other
keypoint matches, and use those points to aid the track-
ing process.

These two principles lead to a process we call incremen-
tal keypoint matching. We begin with a database of learned
keypoint descriptors, each stored with an object ID and an
object-space location. At each frame, from a large collec-
tion of tracked keypoints, we match only a small subset
against the database. We thus spread the processing time
dedicated to keypoint matching evenly across all frames. If
an object is, in fact, present we can positively identify it and
compute its pose within a few frames.

Figure 1 illustrates this process. The matches found
in the first frame are insufficient to recognize either ob-
ject. The matches accumulate over subsequent frames and
eventually enough keypoints are matched to positively iden-
tify the object (poses indicated by white frames). As the
sequence continues, more points are matched against the
database, providing an increasingly confident object iden-
tification and pose estimate. This way, should the system
lose track of some of the originally matched keypoints, we
can still track the overall object using newer matches.

Moreover, using the object’s estimated pose, we can
compute positions for keypoints that have never been
matched to the database. Tracking these points along with

Proceedings of 3DPVT'08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission

June 18 - 20, 2008, Georgia Institute of Technology, Atlanta, GA, USA



Figure 1. An example of Incremental Keypoint Recogni-
tion.

the keypoints that have been matched to the database helps
to maintain an accurate pose through subsequent frames.

Our algorithm makes use of four basic low-level compo-
nents: a keypoint detector, a keypoint descriptor, an opti-
cal flow tracker, and a RANSAC pose estimator. Section 3
briefly describes each of these. The primary contribution of
this work is the overall algorithm that fits these components
together, as detailed in section 4.

Our Experiments focus on 2D objects. The database
therefore specifies the position of each keypoint as (x, y)
coordinates. Sections 5 and 6 describe our experiments and
their results respectively. We show that incremental key-
point matching can robustly recognize objects in a cluttered
scene, usually within ten to twenty frames, and that the sub-
sequent tracking is reliable.

2 Related Work

In recent years a wide array of techniques have been de-
veloped for tracking complex objects using either global
templates [3, 4, 13, 14] or collections of local features
[1, 5, 7, 12]. In any practical implementation, all of these
require some sort of recognition or detection to initially de-

fine what is being tracked. The approach to this requirement
tends to fall into one of two extremes.

On the one hand, one may implement tracking by simply
using a recognition algorithm fast enough to operate in real-
time. This is the approach taken, for example, by Lepetit,
et al. [7], who use randomized trees to quickly match local
image patches to one of several pre-computed views of an
object. At each frame, the whole object is recognized from
scratch in order to recover its pose. A similar procedure is
followed by Wang, et al. [17].

This approach is effective as long as the recognition is
guaranteed to work in real-time. Two problems are likely
to arise, however. The first is that for any frame in which
recognition fails, we have no ability to locate the object un-
til recognition succeeds again. One of our main goals is
thus to maintain a reliable pose estimate even when recogni-
tion briefly fails. The second problem is that even very fast
recognition algorithms will become slower as the size of the
database increases. An algorithm that works in real-time for
a small database may therefore become unacceptably slow
when the database is much larger.

At the other extreme, one may recognize an object in
the first frame of a sequence, then use a separate tracking
algorithm to follow its position as the sequence proceeds
[1, 3, 4, 5, 9, 10, 12, 13]. These are often presented with-
out reference to specific recognition techniques under the
assumption that any recognition process will suffice so long
as it returns an initial object position. This provides a cer-
tain degree of flexibility, because one recognition algorithm
can be replaced with another as needed without affecting
the tracking algorithm. For experimental purposes, tracking
can be initialized manually.

The drawback to treating tracking and recognition as
completely separate processes is that recognition can be
slow. A disproportionately long time needs to be applied to
the first frame, after which the object may have moved too
far to be tracked. An equivalent problem will arise should
tracking fail and recognition be called for re-initialization.
It is precisely this problem that we address with incremen-
tal recognition. By matching a few features against the
database at each frame, we spread processing time evenly
across an entire sequence, resulting in a system more ap-
propriate for real-time applications.

Sakagaito, et al. [14] describe a form of simultaneous
tracking and recognition based on fast high dimensional
nearest neighbor searching, in which the matching results
from one frame are used to initialize the search for the next
frame. The primary difference between their work and our
own is that they perform matching by global object template
rather than local features, leaving no way to handle occlu-
sion. Moreover, they only estimate object pose by embed-
ding a pre-computed pose for every object template. Using
image keypoints with known object space correspondences,
we can achieve accurate pose estimation even for previously
unseen orientations and scales.

An incremental approach to tracking was presented by
Welch and Bishop [18] in which under-constrained prob-

Proceedings of 3DPVT'08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission

June 18 - 20, 2008, Georgia Institute of Technology, Atlanta, GA, USA



lems are solved by incorporating sensor observations over
time. Their work focused on artificial landmarks and did
not address recognition.

We also draw an important distinction between our ap-
proach and those that track the motion of generic moving
objects within the camera’s field of view. For example,
Song and Nevatia [16] and later Perera, et al. [11] demon-
strate multiple vehicle tracking in urban environments. Tak-
ing any sufficiently large region of moving pixels to be ei-
ther a car or a group of cars, both apply probabilistic motion
models to infer the most likely series of positions over a se-
quence of frames. Our work, by contrast, recognizes and
tracks specific object instances based on a trained appear-
ance model. Unrecognized objects, moving or stationary,
are ignored.

3 System Components

The keypoint detector, keypoint descriptor, optical flow
tracker, and RANSAC pose estimator make up the low-level
components of our algorithm. Each is based mostly on well-
established computer vision techniques. We describe these
components briefly in the following subsections.

3.1 Keypoint Detector

From the first captured frame, I0, we detect an initial set
of keypoints, K0. Our keypoint detector follows the basic
framework of Shi and Tomasi [15], who show that a pixel,
i, for which the gradient covariation matrix, M(i), has two
large eigenvalues is particularly effective for tracking. We
thus scan an entire image and accept i as a candidate key-
point if the smaller eigenvalue of M(i) is above a prede-
fined threshold and is a local maximum within a 5x5 pixel
neighborhood.

We then apply two additional filters to the set of candi-
date keypoints. First, all keypoints within 20 pixels of the
frame boundary are discarded, as tracking frequently be-
comes unreliable near an image’s edge. Then we enforce
a limit on the total number of keypoints. When more than
250 keypoints exist in any frame, we retain only the top 250
having the largest eigenvalues.

As subsequent frames, I1, I2, ..., It, are captured we gen-
erate corresponding keypoint sets, K1,K2, ...,Kt. In most
cases Kt is generated by tracking the points from Kt−1, as
will be described in section 3.3. Over time, however, we
lose keypoints either because they drift out of the camera’s
field of view or due to tracking failures. When fewer than 50
keypoints remain, we add more by repeating the detection
process.

3.2 Keypoint Matching Using Walsh-
Hadamard Kernel Projections

In order to match a keypoint against a database of known
objects, we use a low dimensional descriptor vector for the

32x32 pixel image patch surrounding it. By itself, each im-
age patch effectively represents a 1024-dimensional vector.
Matching in this form would be unnecessarily inefficient,
as nearest neighbor searches in very high dimensions are
computationally intensive. The descriptor thus serves to
reduce the dimensionality of the patches, while preserving
their most distinctive features.

Our descriptors use Walsh-Hadamard kernel projections
as described by Hel-Or and Hel-Or [6]. The WH descriptors
take rectangular image patches as input and reduce them to
low dimensional vectors, with lower dimensions encoding
low frequency information and higher dimensions encoding
higher frequency information. Given an image patch p each
element of the kernel projection, p̂, is given by the inner
product, p̂i = uT

i p, where ui is the ith WH kernel.
Before applying the kernel projections, each patch is nor-

malized so that its pixel intensities range from 0 to 255. Two
patches that differ by a constant scale or offset will become
equivalent after normalization, providing a degree of illu-
mination invariance.

We found, through trial and error, that twenty dimen-
sions are sufficient to retain the most characteristic features
of each patch and provide reliable matching results. The
first WH kernel simply computes a sum of the patch’s in-
tensity values, which contains no discriminative informa-
tion after normalization. We thus discard the first kernel
and build our 20-dimensional descriptor vector using WH
kernels u2 through u21.

Given the 20-dimensional descriptor vector for a key-
point, we find its match in a database of learned keypoints
by Euclidean nearest neighbor search. We also apply a dis-
tance ratio filter, only accepting those matches where the
distance to the nearest neighbor is less than 0.75 of the dis-
tance to the second nearest neighbor.

3.3 Bidirectional Optical Flow

The goal of the optical flow process is to take a set of
keypoints, Kt−1, and use the frames It−1 and It to estimate
their new locations, producing a new set of keypoints, Kt.
We use a variation of the Lucas-Kanade optical flow tracker
[8] based on image pyramids [2]. The pyramidal optical
flow algorithm takes two images and a previous point loca-
tion as input and returns a current point location.

kcurr := OpticalF low(Iprev, Icurr, kprev) (1)

The function sometimes returns an error, in which case
the point pprev is deemed untrackable and discarded. Even
after accounting for these errors, however, the optical flow
results may be unreliable. We thus incorporate an additional
filter, similar to the one originally reported in [9], referred
to as bidirectional optical flow filtering.

Bidirectional optical flow first applies the function call
in (1) then calls

k′prev := OpticalF low(Icurr, Iprev, kcurr) (2)

Proceedings of 3DPVT'08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission

June 18 - 20, 2008, Georgia Institute of Technology, Atlanta, GA, USA



with the parameters swapped as if the frames were being
captured in reverse. Under ideal circumstances, k′prev will
be identical to kprev , and even with image noise and other
factors the two points should be very close. So if k′prev and
kprev are very different, we know that the optical flow re-
sults are unreliable and the point should be discarded. Fig-
ure 2 shows an example of bidirectional optical flow filter-
ing.

Figure 2. Bidirectional Optical Flow. For three detected
keypoints we show the optical flow vector in both di-
rections. For two of those keypoints (green vectors),
the vectors match and are deemed valid. For a third,
however, they do not match (red vectors) and the point
is discarded.

3.4 RANSAC Pose Estimation

Every keypoint record in the database includes the key-
point’s location on the object, so that every match gener-
ates a correspondence between image coordinates and ob-
ject coordinates. As keypoints are tracked by optical flow,
we maintain their match results, so that the set of correspon-
dences carries over from one frame to the next.

Given a set of correspondences, we can find the object’s
pose with respect to the camera by least-squares fit. The
keypoint matches, however, will generally contain a few
gross errors, substantially degrading the pose estimation.
To remove these outliers, we use RANSAC. When a suf-
ficiently large set of matches fits a pose hypothesis, we con-
sider the object positively identified and the pose estimation
correct. Both recognition and pose estimation are thus suc-
cessful if and only if RANSAC is successful. Matches that
do not fit the estimated pose are assumed to be erroneous
and discarded.

4 Simultaneous Tracking and Recognition

Our algorithm combines the components described in
section 3 into a unified tracking and recognition system.
It first uses the keypoint detector and descriptor to incre-
mentally recognize the object and estimate its pose. Then,
all unmatched keypoints are back-projected using the com-
puted pose, generating an additional set of correspondences

between image and object. These processes are described
in the next two subsections.

4.1 Incremental Keypoint Matching

In the first captured frame we match a fixed small
number of detected keypoints (typically 10) against the
database. Although every successful match produces a cor-
respondence between image coordinates and object coordi-
nates, the few matches found within a single frame will sel-
dom suffice to positively identify an object or compute its
pose. This is especially true considering that some matches
will be erroneous.

We track individual keypoints from frame to frame using
optical flow, however, so that the set of matches for each
visible object continually grows. We apply RANSAC to the
largest sets of matches at each frame, attempting to fit a pose
estimation.

Along with incremental keypoint matching, we also ap-
ply a kind of “incremental RANSAC.” Normally, RANSAC
iterates over a large number of possible poses, trying to find
the one to which the greatest number of keypoints fits. A
larger number of iterations means a greater chance of suc-
cess but also slower performance. We intentionally run very
few RANSAC iterations each frame (usually ten to twenty).
Those few iterations may not return a successful pose hy-
pothesis, but over the course of several frames RANSAC
will eventually succeed. As with keypoint matching, we
take the iterations that are traditionally applied at a single
frame and spread them over multiple frames.

The advantages of incremental keypoint matching are
thus twofold. The first is one of performance. High dimen-
sional nearest neighbor searches are costly, so to match all
detected keypoints would put too much processing time in
a few initial frames (see the results and discussion of figure
5). By matching points incrementally, we spread the com-
putation evenly over multiple frames and maintain a con-
sistent frame rate. The second advantage is that combin-
ing matches from multiple frames produces a more reliable
pose estimation. If the object is partially occluded, there
may be too few visible key points to produce a pose esti-
mation, even if all of them are tested against the database.
Incremental keypoint matching can handle cases where a
partial occlusion reveals different parts of the object at dif-
ferent frames.

4.2 Back-Projecting Unmatched Key-
points

One of our algorithm’s most powerful features is its in-
corporation of unmatched features. Keypoints that can-
not be matched against the database are matched by back-
projecting the current pose estimate. Given any keypoint in
the image, we test whether the current pose estimate implies
that it should fall on the surface of the object. If it does, we
can compute its location in object coordinates and thus gen-
erate a match. If it turns out that the keypoint actually does

Proceedings of 3DPVT'08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission

June 18 - 20, 2008, Georgia Institute of Technology, Atlanta, GA, USA



Figure 3. Database matches and projection matches.
Thick lines indicate database matches; thin lines indi-
cate projection matches.

not belong to the object, perhaps because it belongs to an
occluding object, then it won’t fit the pose estimates in fu-
ture frames and the point can be discarded.

The system thus maintains two sets of matches, those
returned from database searches (“database matches”) and
those found by back projection (“projection matches”). The
set of projection matches is usually much larger than the
set of database matches, which is, in part, why they are so
useful. Even in cases where all of the database matches
are hidden, the projection matches offer a reliable pose es-
timate.

Figure 3 illustrates an example. After the book is rec-
ognized, there are eight database matches (thick lines). Us-
ing the resulting pose estimate, projection matches are com-
puted for every other keypoint on the cover of the book (thin
lines). As the sequence continues, the points are tracked to
produce a pose at each frame. During a period of substantial
occlusion, the number of database matches falls as low as 2
(too few to compute a pose). Combined with the tracked
projection matches, however, the systems still maintains an
accurate pose estimation.

Figure 4 plots the number of database matches and pro-
jection matches over the entire sequence. With the first suc-

Figure 4. The number of database matches and projec-
tion matches over the course of the sequence in figure
3.

cessful pose estimation (frame 26), RANSAC outliers are
removed, and the number of database matches falls to eight.
While the number of database matches fluctuates, there are
consistently at least 50 projection matches, enough to main-
tain an accurate pose.

Algorithm 1 details the complete process applied to each
frame for each object. It takes the current image and pre-
vious image as input, along with three sets of keypoints -
unmatched keypoints, the database-matched keypoints, and
the projection-matched keypoints. It will update these three
sets and return the object’s pose, which will be NULL if
RANSAC is unsuccessful. Note that RANSAC outliers are
removed from all of the sets, because those keypoints are
generally either part of another object or simply do not
track well. Also note that once a keypoint is matched as a
database match, its object location does not change as long
as it remains a RANSAC inlier. This is not the case for
projection matches, whose object location is re-computed
every frame using the most recent pose estimate.

5 Experimental Setup

Although the basic framework of algorithm 1 could, in
principle, apply to any 3D object, our experiments focus
on 2D rectangular objects to simplify the training process.
Each object can be represented as an image, with points
on the object’s surface represented by (x, y) coordinates.
The transformation from object space to image space is es-
timated as an affine transformation, which, in most cases,
provides a very reasonable pose estimate.

For each of the objects used in our experiments, we build
a database of keypoints in an off-line training process. In
order to generate descriptors that could be recognized from
multiple viewpoints, we transformed each object to simu-
late a variety of possible views. This is similar to the train-
ing process described in [7], except that rather than gener-
ating views randomly, we used evenly distributed values of
scale, in-plane rotation and out-of-plane rotation. In all, we
use five scales, seven in-plane-rotations, and three out-of-
plane rotations for a total of 105 total views. Out of those
views, we preserve the detected keypoints that appear in at
least 25% of the images. A WH kernel projection, as de-
scribed in section 3.2, is computed for each of those key-

Proceedings of 3DPVT'08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission

June 18 - 20, 2008, Georgia Institute of Technology, Atlanta, GA, USA



Algorithm 1 Simultaneous Tracking and Recognition
structure Keypoint {

Point imgLoc
Point objLoc
Time lastSearched
}

KU : set of unmatched Keypoint
KD: set of database matched Keypoint
KP : set of projection matched Keypoint
I, Iprev: current and previous frames

procedure ProcessFrame
/* Update all keypoint positions */
for k ∈ (KU ∪KD ∪KD)

k.imgLoc := OpticalFlow(I, Iprev, k.imgLoc)
end for

/*Add new features if needed*/
if KU ∪KD ∪KP too small

KU := KU∪ DetectKeypoints(I)
endif

/* Match a small subset of points */
S := elements of KU ∪KP

having oldest lastSearched time
for k ∈ S

k.lastSearched := currentT ime
Point p := DatabaseMatch(I , k)
if(p 6= NULL)

k.objectLoc := p
move k to KD

endif
end for

/* Find the new pose, remove outliers, and*/
/* compute new projection matches */
(Inliers,Outliers, ObjPose) := Ransac(KP ∪KD)
if RanSacSuccess

for k ∈ Outliers
discard k

end for
for k ∈ KU ∪KP

k.objLoc := Project(k.imgLoc, ObjPose)
if k.objLoc within object boundary

move k to KP

else
move k to KU

endif
end for

endif

points for each of the views on which it appears. Those ker-
nel projections are the descriptors that make up the database
for each object.

All experiments used a Pentium D 2.8 GHz machine run-
ning Windows XP.

6 Results

Figure 6 illustrates some trained objects along with a
video sequence in which they were successfully recognized
and tracked. All of the examples involve significant back-
ground clutter and, in some cases, substantial occlusion as
well.

The truck in sequence (b) becomes completely occluded
by a passing bus and then re-recognized. To illustrate the
advantage of incremental keypoint matching, we processed
the same sequence using a traditional approach. The tradi-
tional implementation is identical except that it attempts to
match every keypoint from every frame until the object is
recognized. Figure 5 shows a frame-by-frame timing com-
parison. Once the truck has been recognized, the standard
approach is slightly faster, requiring, on average, 27.33 ms
per frame. Incremental keypoint matching averages 34.75
ms per frame over the same period. As the truck becomes
completely occluded, however, the traditional approach per-
forms numerous database searches every frame, dramati-
cally degrading performance. Over this period, it requires
an average of 183.89 ms, the slowest frame taking 255.05
ms. The incremental version averages 36.66 ms per frame
while the truck was occluded, or about 4.5 times faster.

The important difference between the two approaches is
not their absolute processing times but their performance
ratio. We use a brute force nearest neighbor search, and
could likely improve performance with a more sophisticated
search algorithm. Standard matching is slower, however,
due to the total number of searches performed, which does
not depend on any particular search algorithm.

Because we use an affine transformation instead of a ho-
mography, out-of-plane rotations introduce some errors in
the pose estimation. To measure the extent of these errors,
we created an artificial sequence using the book shown in
figure 6(a). The sequence consisted of 200 views of the
the object rendered against a black background, with the in-
plane and out-of-plane rotations each varying by 50◦. We
compared the locations of the object corners at each frame
to a pre-computed ground truth. The average difference be-
tween the estimated locations and ground truth locations
was 9.01 pixels with a standard deviation of 5.30. The max-
imum error for any one corner location was 21.93 pixels

Both plots show periodic spikes in processing time.
These correspond to the frames in which the keypoint de-
tector searched for new keypoints. This approximately dou-
bles the processing time for a frame, but occurs less than
once every ten frames.

Proceedings of 3DPVT'08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission

June 18 - 20, 2008, Georgia Institute of Technology, Atlanta, GA, USA



Figure 5. Timing results for the sequence shown in fig-
ure 6 (b) using both incremental matching and a tradi-
tional approach.

7 Conclusion

In this paper we have demonstrated a valuable technique
for recognizing and tracking objects. Our experiments indi-
cate that it performs in real-time, and that it handles difficult
cases such as occlusion and varying scales and orientations.
The key features of our algorithm are incremental recog-
nition, which allows us to utilize database matches from
multiple frames, and the incorporation of unmatched key-
points, which provides added robustness against occlusion
and tracking failures.

While our current experiments are limited to 2D objects,
future work will attempt to recognize 3D objects as well.
While this will involve a more complex training process,
the basic algorithm should, in theory, work in its present
form.

Acknowledgements

This study was funded by the Center of Excellence for
Research and Academic Training on Interactive Smart Oil-
field Technologies (CiSoft); CiSoft is a joint University of
Southern California-Chevron initiative.

This work made use of Integrated Media Systems Center
Shared Facilities supported by the National Science Foun-
dation under Cooperative Agreement No. EEC-9529152.
Any Opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect those of the National Science
Foundation.

References

[1] S. Avidan. Ensemble tracking. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(2):261–271,
2007.

[2] J. Y. Bouguet. Pyramidal implementation of the
Lucas-Kanade feature tracker. OpenCV library
http://sourceforge.net/projects/opencvlibrary, 2001.

[3] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based ob-
ject tracking. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 25(5):564–575, 2003.

[4] M. Grabner, H. Grabner, and H. Bischof. Real-time track-
ing via online boosting. In Proccedings of the 17th British
Machine Vision Conference, pages 47–56, 2006.

[5] M. Grabner, H. Grabner, and H. Bischof. Learning features
for tracking. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Jun. 2007.

[6] Y. Hel-Or and H. Hel-Or. Real-time pattern matching using
projection kernels. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(9):1430–1445, 2005.

[7] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-
time keypoint recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
775–781, 2005.

[8] B. D. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision. In Proceed-
ings of the International Joint Conference on Artificial Intel-
ligence, pages 674–679, 1981.

[9] J. Mooser, S. You, and U. Neumann. Real-time object track-
ing for augmented reality combining graph cuts and optical
flow. In Proceedings of the IEEE and ACM International
Symposium on Mixed and Augmented Reality, pages 145 –
152, Nov. 2007.

[10] V. Parameswaran, V. Ramesh, and I. Zoghlami. Tunable ker-
nels for tracking. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2179–
2186, Jun. 2006.

[11] A. G. A. Perera, C. Srinivas, A. Hoogs, G. Brooksby, and
W. Hu. Multi-object tracking through simultaneous long oc-
clusions and split-merge conditions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 666–673, Jun. 2006.

[12] J. Platonov, H. Heibel, P. Meier, and B. Grollmann. A mo-
bile markerless AR system for maintenance and repair. In
Proceedings of the IEEE and ACM International Symposium
on Mixed and Augmented Reality, pages 105 – 108, 2006.

[13] X. Ren and J. Malik. Tracking as repeated figure/ground
segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Jun. 2007.

[14] J. Sakagaito and T. Wada. Nearest first traversing graph for
simultaneous object tracking and recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, Jun. 2007.

[15] J. Shi and C. Tomasi. Good features to track. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 593–600, Jun 1994.

[16] X. Song and R. Nevatia. Detection and tracking of mov-
ing vehicles in crowded scenes. In Proceedings of the IEEE
Workshop on Motion and Video Computing, 2007, page 4,
Feb. 2007.

[17] Q. Wang and S. You. Real-time image matching based on
multiple view kernel projection,. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
Jun. 2007.

[18] G. Welch and G. Bishop. SCAAT: incremental tracking with
incomplete information. In SIGGRAPH ’97: Proceedings
of the 24th annual conference on Computer graphics and
interactive techniques, pages 333–344, 1997.

Proceedings of 3DPVT'08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission

June 18 - 20, 2008, Georgia Institute of Technology, Atlanta, GA, USA



(a) frame 1 frame 13 frame 111 frame 228

(b) frame 30 frame 52 frame 243 frame 307

(b) frame 1 frame 11 frame 268 frame 360

frame 1 frame 24 frame 54 frame 134

(d) frame 193 frame 211 frame 246 frame 426

Figure 6. Several examples of simultaneous tracking and recognition. (a) A heavily occluded box in a cluttered setting
is recognized after 13 frames. The occluding hand covers all but a few keypoints, but these are enough to continue
robust tracking. When the occlusion is removed more keypoints are detected and they, too, are incorporated for
tracking. (b) A truck tracked amongst passing cars and other occluding objects. After complete occlusion it takes
64 frames to re-initialize, which at the measured frame rate is about two seconds. (c) An outdoor map recognized
within ten frames and tracked over varying distances. By the end of the sequence, although the object is too far to be
recognized by keypoint matching, robust tracking is still possible. (d) Tracking multiple objects. Once both the book
and the box have been recognized, they can be tracked together through substantial scale and orientation changes.
The system tracks the book while we move it to completely occlude the box. Once the box is revealed again, it is
re-recognized within about 30 frames.

Proceedings of 3DPVT'08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission

June 18 - 20, 2008, Georgia Institute of Technology, Atlanta, GA, USA


