
Automatic Pose Recovery for High-Quality Textures Generation

Jinhui Hu, Suya You, Ulrich Neumann
University of Southern California

{jinhuihu, suyay,uneumann}@graphics.usc.edu

Abstract

This paper proposes new techniques to generate

high quality textures for urban building models by
automatic camera calibration and pose recovery. The
camera pose is decomposed into an orientation and a
translation, an edge error model and knowledge-based
filters are used to estimate correct vanishing points
with heavy trees occlusion, and the vanishing points
are used for the camera calibration and orientation
estimation. We propose new techniques to estimate the
camera orientation with infinite vanishing points and
translation with under-constraints. The final textures
are generated using color calibration and blending
with the recovered pose. A number of textures for
outdoor buildings are automatically generated, which
shows the effectiveness of our algorithms.

1. Introduction

High quality texture is a crucial element in today’s
vision and graphics applications. The generation of
textures requires automatic camera calibration and
pose recovery, which is a challenging task for outdoor
building images. The camera orientation can be
estimated using vanishing points [2], however, heavy
trees occlusion of outdoor urban buildings (Figure
3(a)) causes line clustering and vanishing points
extraction a difficult problem. Furthermore, given a
camera’s orientation, its translation recovery is often
an under-constrained problem using a single image due
to lack of features in rough building models (Figure
3(g)) and the narrow field of view of a camera (Figure
3 (c)). Lastly, it is very hard to capture an image that
covers a whole building due to the small field of view a
camera and the physical barriers of narrow streets.
Multiple images are often necessary to generate
textures for a whole building, which causes other
problems such as illumination variation and parallax in
different images. The goal of this paper is to generate
high quality textures for given urban building models
(especially rough models) by automatic camera
calibration and pose recovery.

Previous work [4] fix the image senor with the
range sensor to get the texture data, and the camera

pose is recovered by a simple calibration relative to the
range sensor. This technique has the advantage of
simple calibration, but lack of flexibility. Stamos and
Allen [10] use a freely moving camera to capture the
image data. The camera pose is computed by fitting
rectangular features from dense 3D range data, which
is not applicable for rough urban models. Sunchun et
al. [6] propose a system to register ground images to
urban models using vanishing points to estimate the
orientation and 2D to 3D feature correspondences to
estimate the translation. The under-constrained
translation problem is solved by manually infer more
3D points from registered images, which is not
applicable when all images are under-constrained.

This paper presents new techniques to solve the
challenges in generating textures for urban models. We
decompose the camera’s external matrix into
orientation and translation. The orientation of the
camera is estimated using vanishing points extracted
by automatic line clustering, the translation is
computed using 3D to 2D corner correspondences, and
multiple images are used if one image does not provide
enough correspondences. A global registration
algorithm is used to refine the pose.

2. Pose Estimation
2.1. Orientation estimation
Vanishing points extraction

Vanishing points are used to estimate the camera’s
orientation due to lack of features in 3D urban models.
Many methods have been presented using vanishing
points for camera calibration and pose recovery [1,6,9].
We opt to use an automatic line clustering method in
image space rather than Gaussian sphere because of
several reasons. Gaussian sphere method is a global
feature extraction method, which is sensitive to
spurious maxima. The accuracy of Gaussian sphere
method is limited to the discretizing accuracy, which is
hard to achieve the precision that an image can offer.

Edges are detected using Canny edge detector and
lines are extracted using Hough Transform as a
preprocess step for vanishing points extraction. The
intersections of all pairs of line segments are then

computed to find all possible vanishing points for line
grouping. We need a grouping criterion to assign lines
to different clusters (vanishing points). Many methods
[9] use a hard threshold of distance or angle, which is
sensitive to noise. We use a method that is based on an
edge error model without any hard thresholds.

The edge error model is as following. Consider the
representation of a line segment using two endpoints,
and assume the two end points have one pixel
precision, then two fan regions with a rectangular
region in the middle can be formed by moving the two
end points freely in the pixel squares (Figure 1(left)).
Since a true vanishing point cannot lie in the image
line segment, the rectangular region has no effect on
the intersection of edge regions. We simply take the
middle point of the edge, and form two fan regions
with the two end points. Furthermore, a true vanishing
point can only lie in one direction of the edge, so we
just take one of the fan region (Figure 1(middle)).
Shufelt [9] uses a constant value of one pixel as the
noise magnitude for the two end points, while we
model the noise magnitude as lc /=ε , where l is the
length of the edge, and c is set to 3.5 pixels. This
model shows a better result than setting the noise
magnitude as a constant value for all lines.

The grouping method is consistent with the edge
error model. For each cluster of two lines, we find the
intersection region A of the edges, and a test edge is
assigned to this cluster when its edge region overlaps
with region A. Furthermore, we use a strong clustering
constraint. A test edge is assigned to a cluster only if
its edge region covers the intersection point of the
cluster (Figure 1(right)). This guarantees the
intersection region of the edge regions in each cluster
is not empty, thus the vanishing point is not empty.
The normalized length of each edge is accumulated in
its assigned cluster, and the maximum clusters are
chosen to compute potential vanishing points using the
vanishing hull theory [1].

Filtering spurious vanishing points
Most of our testing images are outdoor building

images with heavy occlusion by trees (Figure 3(a)),
which causes many spurious vanishing points.
Knowledge of the image and vanishing points are used
to filter spurious vanishing points. We first roughly
classify the extracted lines into x and y groups
according to the line orientation, then filter vanishing
points using the following three filters.

1) Line length. According to the edge error model,
longer lines are more reliable, however, we would like
also to keep shorter lines. So we first filter the lines
with a large length threshold, then estimate the
possible vanishing points, and these points are used to
find more line supporters according to the grouping

method.
2) Covering area. Another observation of the image

is that edges of trees only cover a small part of the
image region, so the ratio of the covering area against
the image area is also used to filter spurious vanishing
points.

3) Valid vanishing point. Vanishing points are the
intersection of image lines that correspond to parallel
lines in 3D, so a valid vanishing point will not lie on
the image segment in the image space. This filter is
very effective in reducing spurious clusters.

Finding clusters and grouping lines using all pairs
of line segments is computational expensive. Even
though we classify lines into two directions to reduce
the line number and use filters to reject spurious
clusters, the number of clusters may still be large. The
RANSAC algorithm is used to find the maximum
cluster of lines for x-y direction rather than testing each
pair of line segments. The vanishing point of z
direction is estimated using the orthogonal property of
the three directions, and supporting lines are found
using our grouping method to refine the position of the
vanishing point.

Rotation estimation
The rotation matrix and camera’s focal length and

principle point can be estimated given three orthogonal
vanishing points. Cipolla et al. [2] derive the following
equations:

Rv
u

vvv
uuu
















=

















100
0

0

0

0

321

332211

332211
α

α

λλλ
λλλ
λλλ
















−−−
−−−

=

321

033022011

033022011
/)(/)(/)(
/)(/)(/)(

λλλ
αλαλαλ
αλαλαλ

vvvvvv
uuuuuu

R

Where 1λ , 2λ and 3λ are scale factors,),(00 vu is the
principle point, 3,2,1),(=ivu ii are the three orthogonal
vanishing points, andα is the focal length. When only
two vanishing points are available, the third vanishing
point can be inferred by assuming that the principle
point is at the camera center [6].

(1)

(2)

Figure 1. The edge error model and grouping method.

Equation (2) gives the solution of the rotation
matrix for finite vanishing points, however, when the
vanishing points are at infinity (lines are parallel in the
image space), the solution becomes unclear.

We derive the equations to compute the rotation
matrix for infinite vanishing points using Euler angles.
A rotation matrix can be represented using three Euler
angles (We ignore singularity cases of 90 degrees,
which can be treated specifically).

















++−
−+−+

−
=

cxcysxczsycxszsxszsycxcz
sxcycxczsxsyszcxszsxsycz
sycyszcycz

R

Where x, y, z are the three Euler angles, cx stands
for cosx, and sx stands for sinx. We classify the
situation into two cases according to the number of
infinite vanishing points, and derive the solutions
respectively.

1. One infinite vanishing point, two finite vanishing
points. Suppose the x direction vanishing point is at
infinite, thus the y direction rotation is zero, so:
















−

−
=

cxsxczsxsz
sxcxczcxsz

szcz
R

0

Substitute Equation (4) into Equation (1), we have:

Rv
u

vvv
uuu

A















=
















=

100
0

0

0

0

321

332211

332211
α

α

λλλ
λλλ
λλλ
















+−++

+−+
=

cxsxczsxsz
cxvsxsxczvcxczsxszvcxsz

cxusxczuszsxszucz

000

000
ααα

αα

Assume 0≠cz (the rotation around z axis is not 90
degrees, otherwise we have just two variables of x
andα , which is trivial to solve), from certain
operations on both sides, we have:

112111 // vuAA = =)/()(00 sxvcxsxuctgz ++ αα

23212 / uAA = = sxsxutgz /)(0+−α

23222 / vAA = = 0vctgx +α
Without loss of generality, we assume the principle

points are at the image center, and 0,0 00 == vu . Let

111 / vuk = (although 11 vu are at infinity, the slope of
the image lines is still finite since z rotation is not 90
degrees), 222 / vuk = , it is easy to find the solution of
Equation (6) as:

2/1
21

1)]/(1[cos kkx −= −
tgxvv)(02 −=α

]/)[(20
1 αsxusxutgz −= −

We can derive the solution in a similar way when
the y or z direction vanishing point is at infinite.

2. Two infinite vanishing points, one finite
vanishing points. Suppose x, y direction vanishing
points are at infinite, then the x, y direction rotation is
zero, so we have:















 −
=

















100
0
0

321

332211

332211
czsz
szcz

vvv
uuu

αα
αα

λλλ
λλλ
λλλ

Thus,)/(11
1 vuctgz −= , where 11 / vu is the slope of

image lines that corresponds to the x direction
vanishing point. The focal length cannot be recovered
in this case. The other tow cases when the z-y or x-y
direction vanishing points are at infinite can be derived
in a similar way.

2.2. Translation estimation

Given the orientation of the camera, the translation
relative to the 3D models can be computed using two
2D to 3D point correspondences [6]. However, due to
the physical limitations (such as a camera’s small field
of view and narrow streets), sometimes only one 3D
corner or none corners are visible for a single image
(Figure 3(c)), which makes the translation estimation
problem an under-constrained problem.

Multiple images are used to compute the camera’s
translation when each single image does not provide
enough constraints. Let’s first consider two images,
each of which covers only one 3D model corner
(Figure 2). Given only one 2D to 3D point
correspondence, the position of the camera’s projection
center has ambiguity; it is along the line of the 3D
point and 2D image point (Figure 2 line 11iP). The
ambiguity can be fixed for both images given one extra
2D image point correspondence between the two
images. We give a geometrical explanation for this,
and the exact analytical solution is not shown due to
limited space.

As shown in Figure 2, 1O 2O are the projection
centers of two images, 1P 2P are two 3D model
vertices, with 1i 2i as their image points respectively,

and),('
33 ii is a given image correspondence pair. The

(3)

(4)

(5)

(6)

(7)

(8)

Figure 2. Translation estimation.
2O 1O

1i
'
3i 3i 2i

1P
1l 2l

3P
2P

3D position of 1O is along the line 11iP . Since the
orientation is fixed, the line 31iO forms a plane while
its end points 1O moves along the line 11iP . The plane

311 iOP intersects with the model plane at a line 1l (or a
curve for a curved model surface). Similarly,

'
32iO forms a plane while its end points 2O moves

along the line 22iP , and the plane '
322 iOP intersects

with the model plane at a line 2l . So the 3D model
point 3P is uniquely determined by the intersection of
line 1l and 2l . Hence the 3D position of 1O is fixed by
the intersection of line 11iP and 33iP . Similarly, the 3D
position of 2O is fixed by the intersection of

line 22iP and '
33iP . Thus we can compute the 3D

translation for both images.

2.3. Global registration

The pose computed for a single image using several
point correspondences is not robust, so a global
registration process is employed to refine the pose. 2D
image corners are extracted for each image, and they
are matched automatically using the estimated pose,
then the matched corners are used to find
corresponding 3D model points, and a bundle
adjustment process is used to refine poses by
minimizing the overall projection errors.

3. Texture generation

A base buffer [5] is allocated for each façade of the
building model to store the final textures. Each image
is warped to the base buffer, and multiple images are
blended.

 Due to the illumination variation in different
images, the textures have different colors, which cause
visual inconsistence. A color rectification process is
used to solve the problem. We first chose an image as
the base color image, then pixels with constant colors
in a window with user defined size (we use size 5 by 5
in our implementation) are extracted, and these pixels
are automatically matched with other images using the
estimated pose, finally each image is color rectified
with an affine color model [8].
















+
































=



















b

g

r

O
O
O

b
g
r

aaa
aaa
aaa

b
g
r

333333

232323

131211

'

'

'

Images taken at different viewpoints cause a
parallax problem. Blending all the overlapping area
will create ghost effects. We solve the problem by
automatically finding the best blending area based on
the histogram of the 2D matching corners between
images. The size of the area is a user-defined value,
which is set to a small value for strong parallax images.
This method helps to reduce visual defects caused by
parallax for highly structured textures such as building
bricks and windows. However, a more complicated
algorithm using dynamical programming to find the
best cut is necessary for unstructured textures [3].

4. Results

Several different textures are generated using the
described method. The 3D models are generated using
LiDAR data with a semi-automatic modeling system
[12]. Pictures are taken with an un-calibrated camera at
different time, and the focal length and illumination
varies from image to image.

Figure 3(a) and (b) demonstrate the effectiveness of
the vanishing points extraction method using filters
described in algorithm 1. Many false vanishing points
(yellow points) are detected before the filtering due to
the heavy occlusion of trees and small-scale textures
(Figure 3(a)). These spurious vanishing points are
filtered using our algorithm, and only correct dominant
vanishing points are identified (Figure 3(b)). The x
direction vanishing point for the image in Figure 3(a)
is at infinite, and its orientation is recovered using
Equation 7. The final texture created from four
separated images is shown in Figure 3(i).

Two of the four original images used to create the
texture for another building are shown in Figure 3(c)
and (d). Each of the four images only covers one
corner of the building, so the translation is an under-
constrained problem. We first compute the orientation
for each of the image using automatically estimated
vanishing points [1], then combine the four images to
compute the translation, and the final pose are refined
using bundle adjustment. The four images are color
corrected, and warped to the base buffer using the
refined pose. The best blending area are automatically
detected (Figure 3(e)) to reduce parallax effects, and
the final texture is generated using blending techniques
(Figure 3(f)). More textures are generated using the
described technique (Figure 3 (h), (i)), and integrated
into a 3D environment (Figure 3 (g)).

5. Conclusion

(9)

This paper presents new techniques to address the
challenges in generating textures for urban models.
We decompose the camera pose into orientation and
translation, and use an edge error model and
knowledge-based filters to estimate correct vanishing
points. We derive equations to compute the orientation
with infinite vanishing points, estimate the translation
by combining information from multiple images when
each single image does not provide enough constraints,
and generate final textures with color calibration and
blending. Future work includes using the registered
images to correct 3D models and model façade details.

6. References
[1] J. Hu, S. You, U. Neumann. Vanishing hull, to appear

in 3DPVT, 2006, UNC.
[2] R. Cipolla, T. Drummond and D.P. Robertson. Camera

calibration from vanishing points in images of
architectural scenes. In Proceedings of British Machine
Vision Conference, pp.382–391, 1999.

[3] A. Efros, and W. T. Freeman. Image quilting for texture
synthesis and transfer. Proceedings of SIGGRAPH
2001, pp. 341–346, 2001.

[4] C. Fruh and a. Zakhor. Constructing 3D city models by
merging aerial and ground views. CGA, 23(6): 52-61,
2003.

[5] J. Hu, S. You, and U. Neumann. Texture painting from

video. Journal of WSCG, ISSN 1213–6972, Volume
13,pp. 119–125, 2005.

[6] S.C. Lee, S. K. Jung, and R. Nevatia. Integrating ground
and aerial views for urban site modeling. ICPR, 2002.

[7] D. Liebowitz and A. Zisserman. Metric rectification for
perspective images of planes. In CVPR, pp.482–488,
1998.

[8] F. Mindru, L. V. Gool and T. Moons. Model estimation
for photometric changes of outdoor planar color
surfaces cuased by changes in illumination and
viewpoint. ICPR, 2002.

[9] J. Shufelt. Performance evaluation and analysis of
vanishing point detection techniques. PAMI, 21(3):282–
288, 1999.

[10] I. Stamos and P. Allen. Automatic registration of 2D
with 3D imagery in urban environments. ICCV, pp.731–
736, 2001.

[11] X. Wang et al. Recovering façade texture and
microstructure from real world images. In Proceedings
2nd International Workshop on Texture Analysis and
Synthesis at ECCV, pp. 145–149, 2002.

[12] S. You, J. Hu, U. Neumann, and P. Fox. Urban Site
Modeling From LiDAR, Second International
Workshop on Computer Graphics and Geometric
Modeling, 2003.

(a)

Figure 3. Results of generated textures.

(c) (e)

(b) (d) (f)

(g) (h) (i)

