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Abstract 

 
This paper proposes new techniques to generate 

high quality textures for urban building models by 
automatic camera calibration and pose recovery. The 
camera pose is decomposed into an orientation and a 
translation, an edge error model and knowledge-based 
filters are used to estimate correct vanishing points 
with heavy trees occlusion, and the vanishing points 
are used for the camera calibration and orientation 
estimation. We propose new techniques to estimate the 
camera orientation with infinite vanishing points and 
translation with under-constraints. The final textures 
are generated using color calibration and blending 
with the recovered pose. A number of textures for 
outdoor buildings are automatically generated, which 
shows the effectiveness of our algorithms. 

  
1. Introduction 

High quality texture is a crucial element in today’s 
vision and graphics applications. The generation of 
textures requires automatic camera calibration and 
pose recovery, which is a challenging task for outdoor 
building images. The camera orientation can be 
estimated using vanishing points [2], however, heavy 
trees occlusion of outdoor urban buildings (Figure 
3(a)) causes line clustering and vanishing points 
extraction a difficult problem. Furthermore, given a 
camera’s orientation, its translation recovery is often 
an under-constrained problem using a single image due 
to lack of features in rough building models (Figure 
3(g)) and the narrow field of view of a camera (Figure 
3 (c)). Lastly, it is very hard to capture an image that 
covers a whole building due to the small field of view a 
camera and the physical barriers of narrow streets. 
Multiple images are often necessary to generate 
textures for a whole building, which causes other 
problems such as illumination variation and parallax in 
different images. The goal of this paper is to generate 
high quality textures for given urban building models 
(especially rough models) by automatic camera 
calibration and pose recovery. 

Previous work [4] fix the image senor with the 
range sensor to get the texture data, and the camera 

pose is recovered by a simple calibration relative to the 
range sensor. This technique has the advantage of 
simple calibration, but lack of flexibility. Stamos and 
Allen [10] use a freely moving camera to capture the 
image data. The camera pose is computed by fitting 
rectangular features from dense 3D range data, which 
is not applicable for rough urban models. Sunchun et 
al. [6] propose a system to register ground images to 
urban models using vanishing points to estimate the 
orientation and 2D to 3D feature correspondences to 
estimate the translation. The under-constrained 
translation problem is solved by manually infer more 
3D points from registered images, which is not 
applicable when all images are under-constrained. 

This paper presents new techniques to solve the 
challenges in generating textures for urban models. We 
decompose the camera’s external matrix into 
orientation and translation. The orientation of the 
camera is estimated using vanishing points extracted 
by automatic line clustering, the translation is 
computed using 3D to 2D corner correspondences, and 
multiple images are used if one image does not provide 
enough correspondences. A global registration 
algorithm is used to refine the pose. 

 
2. Pose Estimation 
2.1. Orientation estimation 
Vanishing points extraction 

Vanishing points are used to estimate the camera’s 
orientation due to lack of features in 3D urban models. 
Many methods have been presented using vanishing 
points for camera calibration and pose recovery [1,6,9]. 
We opt to use an automatic line clustering method in 
image space rather than Gaussian sphere because of 
several reasons. Gaussian sphere method is a global 
feature extraction method, which is sensitive to 
spurious maxima. The accuracy of Gaussian sphere 
method is limited to the discretizing accuracy, which is 
hard to achieve the precision that an image can offer.  

Edges are detected using Canny edge detector and 
lines are extracted using Hough Transform as a 
preprocess step for vanishing points extraction. The 
intersections of all pairs of line segments are then 



computed to find all possible vanishing points for line 
grouping. We need a grouping criterion to assign lines 
to different clusters (vanishing points). Many methods 
[9] use a hard threshold of distance or angle, which is 
sensitive to noise. We use a method that is based on an 
edge error model without any hard thresholds.  

The edge error model is as following. Consider the 
representation of a line segment using two endpoints, 
and assume the two end points have one pixel 
precision, then two fan regions with a rectangular 
region in the middle can be formed by moving the two 
end points freely in the pixel squares (Figure 1(left)). 
Since a true vanishing point cannot lie in the image 
line segment, the rectangular region has no effect on 
the intersection of edge regions. We simply take the 
middle point of the edge, and form two fan regions 
with the two end points. Furthermore, a true vanishing 
point can only lie in one direction of the edge, so we 
just take one of the fan region (Figure 1(middle)). 
Shufelt [9] uses a constant value of one pixel as the 
noise magnitude for the two end points, while we 
model the noise magnitude as lc /=ε , where l is the 
length of the edge, and c is set to 3.5 pixels.  This 
model shows a better result than setting the noise 
magnitude as a constant value for all lines. 

The grouping method is consistent with the edge 
error model. For each cluster of two lines, we find the 
intersection region A of the edges, and a test edge is 
assigned to this cluster when its edge region overlaps 
with region A. Furthermore, we use a strong clustering 
constraint. A test edge is assigned to a cluster only if 
its edge region covers the intersection point of the 
cluster (Figure 1(right)). This guarantees the 
intersection region of the edge regions in each cluster 
is not empty, thus the vanishing point is not empty. 
The normalized length of each edge is accumulated in 
its assigned cluster, and the maximum clusters are 
chosen to compute potential vanishing points using the 
vanishing hull theory [1]. 

Filtering spurious vanishing points 
Most of our testing images are outdoor building 

images with heavy occlusion by trees (Figure 3(a)), 
which causes many spurious vanishing points. 
Knowledge of the image and vanishing points are used 
to filter spurious vanishing points. We first roughly 
classify the extracted lines into x and y groups 
according to the line orientation, then filter vanishing 
points using the following three filters. 

1) Line length. According to the edge error model, 
longer lines are more reliable, however, we would like 
also to keep shorter lines. So we first filter the lines 
with a large length threshold, then estimate the 
possible vanishing points, and these points are used to 
find more line supporters according to the grouping 

method.  
2) Covering area. Another observation of the image 

is that edges of trees only cover a small part of the 
image region, so the ratio of the covering area against 
the image area is also used to filter spurious vanishing 
points. 

3) Valid vanishing point. Vanishing points are the 
intersection of image lines that correspond to parallel 
lines in 3D, so a valid vanishing point will not lie on 
the image segment in the image space. This filter is 
very effective in reducing spurious clusters. 

Finding clusters and grouping lines using all pairs 
of line segments is computational expensive. Even 
though we classify lines into two directions to reduce 
the line number and use filters to reject spurious 
clusters, the number of clusters may still be large. The 
RANSAC algorithm is used to find the maximum 
cluster of lines for x-y direction rather than testing each 
pair of line segments. The vanishing point of z 
direction is estimated using the orthogonal property of 
the three directions, and supporting lines are found 
using our grouping method to refine the position of the 
vanishing point.  

Rotation estimation 
The rotation matrix and camera’s focal length and 

principle point can be estimated given three orthogonal 
vanishing points. Cipolla et al. [2] derive the following 
equations: 
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Where 1λ , 2λ and 3λ are scale factors, ),( 00 vu  is the 
principle point, 3,2,1),( =ivu ii are the three orthogonal 
vanishing points, andα is the focal length. When only 
two vanishing points are available, the third vanishing 
point can be inferred by assuming that the principle 
point is at the camera center [6]. 

(1)

(2)

Figure 1.  The edge error model and grouping method. 



Equation (2) gives the solution of the rotation 
matrix for finite vanishing points, however, when the 
vanishing points are at infinity (lines are parallel in the 
image space), the solution becomes unclear. 

We derive the equations to compute the rotation 
matrix for infinite vanishing points using Euler angles.  
A rotation matrix can be represented using three Euler 
angles (We ignore singularity cases of 90 degrees, 
which can be treated specifically). 
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Where x, y, z are the three Euler angles, cx stands 
for cosx, and sx stands for sinx. We classify the 
situation into two cases according to the number of 
infinite vanishing points, and derive the solutions 
respectively. 

1. One infinite vanishing point, two finite vanishing 
points. Suppose the x direction vanishing point is at 
infinite, thus the y direction rotation is zero, so: 
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Substitute Equation (4) into Equation (1), we have: 
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Assume 0≠cz  (the rotation around z axis is not 90 
degrees, otherwise we have just two variables of x 
andα , which is trivial to solve), from certain 
operations on both sides, we have: 

112111 // vuAA = = )/()( 00 sxvcxsxuctgz ++ αα   

23212 / uAA = = sxsxutgz /)( 0+−α   

23222 / vAA = = 0vctgx +α   
Without loss of generality, we assume the principle 

points are at the image center, and 0,0 00 == vu . Let 

111 / vuk = (although 11 vu are at infinity, the slope of 
the image lines is still finite since z rotation is not 90 
degrees), 222 / vuk = , it is easy to find the solution of 
Equation (6) as: 
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We can derive the solution in a similar way when 
the y or z direction vanishing point is at infinite. 

2. Two infinite vanishing points, one finite 
vanishing points. Suppose x, y direction vanishing 
points are at infinite, then the x, y direction rotation is 
zero, so we have: 
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Thus, )/( 11
1 vuctgz −= , where 11 / vu is the slope of 

image lines that corresponds to the x direction 
vanishing point. The focal length cannot be recovered 
in this case. The other tow cases when the z-y or x-y 
direction vanishing points are at infinite can be derived 
in a similar way. 

 
2.2. Translation estimation 

Given the orientation of the camera, the translation 
relative to the 3D models can be computed using two 
2D to 3D point correspondences [6]. However, due to 
the physical limitations (such as a camera’s small field 
of view and narrow streets), sometimes only one 3D 
corner or none corners are visible for a single image 
(Figure 3(c)), which makes the translation estimation 
problem an under-constrained problem. 

Multiple images are used to compute the camera’s 
translation when each single image does not provide 
enough constraints. Let’s first consider two images, 
each of which covers only one 3D model corner 
(Figure 2). Given only one 2D to 3D point 
correspondence, the position of the camera’s projection 
center has ambiguity; it is along the line of the 3D 
point and 2D image point (Figure 2 line 11iP ). The 
ambiguity can be fixed for both images given one extra 
2D image point correspondence between the two 
images. We give a geometrical explanation for this, 
and the exact analytical solution is not shown due to 
limited space. 

As shown in Figure 2, 1O 2O  are the projection 
centers of two images, 1P 2P  are two 3D model 
vertices, with 1i 2i as their image points respectively, 

and ),( '
33 ii is a given image correspondence pair.  The 
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Figure 2. Translation estimation. 
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3D position of 1O is along the line 11iP . Since the 
orientation is fixed, the line 31iO forms a plane while 
its end points 1O  moves along the line 11iP . The plane 

311 iOP  intersects with the model plane at a line 1l (or a 
curve for a curved model surface). Similarly, 

'
32iO forms a plane while its end points 2O  moves 

along the line 22iP , and the plane '
322 iOP  intersects 

with the model plane at a line 2l .  So the 3D model 
point 3P  is uniquely determined by the intersection of 
line 1l and 2l . Hence the 3D position of 1O is fixed by 
the intersection of line 11iP and 33iP . Similarly, the 3D 
position of 2O  is fixed by the intersection of 

line 22iP and '
33iP . Thus we can compute the 3D 

translation for both images. 
 
2.3. Global registration 

The pose computed for a single image using several 
point correspondences is not robust, so a global 
registration process is employed to refine the pose. 2D 
image corners are extracted for each image, and they 
are matched automatically using the estimated pose, 
then the matched corners are used to find 
corresponding 3D model points, and a bundle 
adjustment process is used to refine poses by 
minimizing the overall projection errors.  
 
3. Texture generation 

A base buffer [5] is allocated for each façade of the 
building model to store the final textures. Each image 
is warped to the base buffer, and multiple images are 
blended. 

 Due to the illumination variation in different 
images, the textures have different colors, which cause 
visual inconsistence. A color rectification process is 
used to solve the problem.  We first chose an image as 
the base color image, then pixels with constant colors 
in a window with user defined size (we use size 5 by 5 
in our implementation) are extracted, and these pixels 
are automatically matched with other images using the 
estimated pose, finally each image is color rectified 
with an affine color model [8]. 
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Images taken at different viewpoints cause a 
parallax problem. Blending all the overlapping area 
will create ghost effects. We solve the problem by 
automatically finding the best blending area based on 
the histogram of the 2D matching corners between 
images. The size of the area is a user-defined value, 
which is set to a small value for strong parallax images. 
This method helps to reduce visual defects caused by 
parallax for highly structured textures such as building 
bricks and windows. However, a more complicated 
algorithm using dynamical programming to find the 
best cut is necessary for unstructured textures [3].  

 
4. Results 

Several different textures are generated using the 
described method. The 3D models are generated using 
LiDAR data with a semi-automatic modeling system 
[12]. Pictures are taken with an un-calibrated camera at 
different time, and the focal length and illumination 
varies from image to image. 

Figure 3(a) and (b) demonstrate the effectiveness of 
the vanishing points extraction method using filters 
described in algorithm 1.  Many false vanishing points 
(yellow points) are detected before the filtering due to 
the heavy occlusion of trees and small-scale textures 
(Figure 3(a)). These spurious vanishing points are 
filtered using our algorithm, and only correct dominant 
vanishing points are identified (Figure 3(b)). The x 
direction vanishing point for the image in Figure 3(a) 
is at infinite, and its orientation is recovered using 
Equation 7. The final texture created from four 
separated images is shown in Figure 3(i). 

Two of the four original images used to create the 
texture for another building are shown in Figure 3(c) 
and (d).  Each of the four images only covers one 
corner of the building, so the translation is an under-
constrained problem. We first compute the orientation 
for each of the image using automatically estimated 
vanishing points [1], then combine the four images to 
compute the translation, and the final pose are refined 
using bundle adjustment. The four images are color 
corrected, and warped to the base buffer using the 
refined pose. The best blending area are automatically 
detected (Figure 3(e)) to reduce parallax effects, and 
the final texture is generated using blending techniques 
(Figure 3(f)). More textures are generated using the 
described technique (Figure 3 (h), (i)), and integrated 
into a 3D environment (Figure 3 (g)). 

 
5. Conclusion 

(9)



This paper presents new techniques to address the 
challenges in generating textures for urban models.  
We decompose the camera pose into orientation and 
translation, and use an edge error model and 
knowledge-based filters to estimate correct vanishing 
points. We derive equations to compute the orientation 
with infinite vanishing points, estimate the translation 
by combining information from multiple images when 
each single image does not provide enough constraints, 
and generate final textures with color calibration and 
blending. Future work includes using the registered 
images to correct 3D models and model façade details. 
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