
into n regions and assigns each node a separate region to
render. This parallel algorithm does not specify what ren-
dering method is used by each node to render its region. By
considering parallel algorithms and rendering methods in-
dependently, the performance ramifications of each issue are
separately more clearly.

1.2. Redistribution
Communication costs are an important issue for parallel

system and software designers to consider. The selection of
a parallel algorithm has a major impact on the communica-
tion requirement between nodes. Unless all nodes have a
local copy of the data, or viewing positions are severely re-
stricted, a parallel volume rendering algorithm intrinsically
requires communication between compute nodes. The
transfer between nodes of volume or image data necessitated
by a parallel algorithm is defined here as redistribution. Re-
distribution costs are measured as the quantity of data
transferred (redistribution size) and the time consumed by
moving it over the network (redistribution time). Replica-
tion of data at each node is wasteful for large numbers of
nodes and impossible when data size exceeds local memory
size. Restricting the viewing positions limits one’s ability to
explore the data. Therefore, in most practical cases, redis-
tribution must occur.

The upper bound of redistribution size is independent of the
rendering method. The choice of rendering method may re-
duce the actual requirement. For example, nodes that render
by ray casting may adaptively terminate rays and therefore
not access portions of the data that would otherwise be
needed. Such efficiencies are data dependent but often
significant. In this analysis, the peak communication re-
quirement is derived as an upper bound with the understand-
ing that rendering efficiencies may reduce this by some
factor.

1.3. Mesh Networks
Communication between nodes in multicomputers is

frequently through two and three-dimensional mesh-
connected networks. (E.g.: Stanford Dash, Intel Delta and
Paragon, MIT J-Machine, Caltech Mosaic.) The perfor-
mance of these communication networks with parallel
volume rendering algorithms is one focus of this paper.
Mesh networks scale easily so they are a practical choice for

Abstract
This paper examines the many ways to structure parallel

volume rendering algorithms and analyzes the communica-
tion costs associated with them. Parallel volume rendering
algorithms are enumerated through a taxonomy which sorts
them into two main classes that exhibit similar communica-
tion costs: image and object partitions. The intrinsic com-
munication costs for algorithms in these classes are analyzed
independent of an implementation. Given a network model
for a target system, an algorithm’s intrinsic communication
cost can be used to estimate the time consumed by commu-
nication and the effect upon communication time as the
system size and data size are varied. Communication cost
and time are measured on the Intel Touchstone Delta to ver-
ify the predicted scaling behavior. The results show that, for
a fixed screen size, systems with mesh networks scale well
for object partition algorithms − the time required for com-
munication decreases as the data and system sizes increase.

1. Introduction
The computational expense of volume rendering moti-

vates the development of parallel implementations on
multicomputers. Through parallelism, higher frame rates are
achieved which provide more natural viewing control and
enhanced comprehension of three dimensional structure.
Many parallel implementations have been reported, but no
framework has been established to allow comparisons of
their relative merits independent of their host hardware.
This paper enumerates and classifies parallel volume ren-
dering algorithms suitable for multicomputers with distrib-
uted memory and a communication network. Communica-
tion costs are determined for classes of parallel algorithms
by considering their inherent communication requirements.
This study of algorithms and their communication costs
should be useful to designers and implementers of parallel
volume rendering hardware and software systems.

1.1. Algorithms and Rendering Methods
There is a distinction between a parallel volume ren-

dering algorithm and a volume rendering method like ray
casting or splatting. A parallel algorithm describes how data
and computation is distributed among the resources of a
system. In such a description, the rendering method is not an
issue and may be unspecified. For example, a simple paral-
lel algorithm for a system with n nodes divides the screen

1

Communication Costs for
Parallel Volume-Rendering Algorithms

Ulrich Neumann

neumann@cs.unc.edu
Department of Computer Science

University of North Carolina at Chapel Hill

this volume are aligned behind the image pixels along the
view direction and are referred to as the image lattice. The
work assigned to a node is based on either its assigned object
or image lattice subset . This task assignment distinction
creates two main classes of parallel algorithms, image par-
titions and object partitions. In an image partition (Fig. 2),
nodes are assigned volumes of image lattice points to
compute. Redistribution occurs as volume data moves be-
tween nodes to facilitate interpolation of the assigned
points. In an object partition (Fig. 3), each node renders a
local color and opacity image of its assigned data subset.
Redistribution occurs as local images are moved to facilitate
their combining into a complete image. Member algorithms
in each class differ in the shapes of the data and image sub-
sets, the subset’s static or dynamic nature over time, and the
spatial relationship of the subsets to each other [Neum93].
A taxonomy (Fig. 4) enumerates the possible algorithms
graphically. Note that the choice of image or object order
rendering methods is also a variable.

2.1. Lattice Subsets
Subsets of the object or image lattices may be distributed
among nodes in three shapes: slabs, shafts, and blocks (Fig.
5). When data is redistributed, the subset size is the granu-
larity of the transfer. To control transfer size there may be
more data subsets than nodes; a node may store multiple

systems ranging from tens to thousands of nodes. This paper
provides models for predicting the redistribution costs in-
curred by different parallel algorithms on a range of mesh
system sizes. The models predict that, for a fixed image
size, the class of object partition algorithms requires de-
creasing communication time as the data size and number of
nodes increases. This scaling behavior makes highly paral-
lel systems feasible with thousands of nodes connected by a
modest 2D mesh network without loss of performance due
to communication .

2. Parallel Algorithms
In parallel volume rendering algorithms subsets of two

volumes must be distributed over the nodes of a system (Fig.
1). The data to be visualized is one volume and referred to
as the object lattice. The other volume is the set of points
whose values are computed to produce an image. Points in

2

View
Direction

Object
Lattice

Image
Lattice

Fig. 1 - Image and object lattice volumes

Node 1

Screen subset
assigned to nodes
for compositing

(image lattice distribution)

Data subsets assigned
to nodes for rendering

(object lattice distribution)

Redistribution of
local images to

facilitate compositing
into final image

Node 1

Render assigned data
into local image

Fig. 3 - Object partition algorithms

Node 1

Node 1

Screen subsets
assigned to nodes

for rendering
(image lattice distribution)

Data subset
assigned to nodes

(object lattice distribution)

Data access into
local and remote

data subsets
(Redistribution)

Fig. 2 - Image partition algorithms

Data

(object lattice)

Tasks

(image lattice)

Slabs | Shafts | Blocks

Contiguous | Interleaved

Static | Dynamic

Image

(image lattice)

Tasks

(object lattice)

Slabs | Shafts | Blocks

Contiguous | Interleaved

Static | Dynamic

Parallel

Algorithms

Object PartitionImage Partition

Image | Object

Rendering

Image | Object

Rendering

Fig. 5. - Data subset shapes

Slabs Shafts Blocks

Fig. 4 - Taxonomy of
parallel volume rendering algorithms

message flows. If a needed path is already occupied,
progress toward establishing the connection is blocked until
the needed path is relinquished. Once a connection is es-
tab l ished, the message (or packet) f lows wi thout
interruption. A partially-routed blocked message occupies
paths that may in turn block other messages.

John Ngai [Ngai89] characterized these networks while pro-
posing adaptive enhancements. Some of Ngai’s test results
for 2D and 3D mesh and torus topologies are reproduced in
figure 6. The test conditions of uniformly-random message
destinations and fixed-length single-packet messages are
reasonable simplifications of the conditions encountered in
some of the parallel algorithms considered here. The major
performance aspects of these networks are the throughput
and average latency of messages as a function of applied
load and bisection bandwidth.

Throughput is a measure of aggregate network message de-
livery bandwidth.

Latency is the delay from a source node’s injection of a mes-
sage header into the network until the complete message
exits the network at the receiving node.

Applied load is the aggregate message injection bandwidth
into the network.

Bisection bandwidth is the aggregate peak bandwidth
through the minimal set of routing channels that, when re-
moved, splits the network into two equal and disjoint parts.

For a network with n nodes, let n = ka, where k is even and a
is the dimension of the mesh. The bisection width of a mesh
is n / k channels. The bisection bandwidth of a mesh and
torus is

bmesh = c n / k (1)

subsets in its local memory. If these multiple subsets are
spatially adjacent, (e.g., multiple slices forming a slab) they
are classified as contiguous. Any non-adjacent arrangement
is classified as interleaved. If the distribution of subsets var-
ies between frames, the distribution is dynamic. An un-
changing distribution is static.

Because their redistribution costs differ, image partitions are
subdivided into two different subclasses, one with static data
distributions, and the other with dynamic data distributions.
This distinction is not made for object partitions since static
and dynamic data distributions exhibit the same redistribu-
tion costs. The analysis of the redistribution costs for three
classes of algorithms is sufficient to cover all the approaches
shown in the taxonomy.

3. Network Model
A network model is needed to estimate the redistribu-

tion time for a particular system once the redistribution size
for an algorithm is known. This section develops a model
for mesh and toroidal networks commonly used in
multicomputers. Current generation mesh and toroidal net-
works employ virtual cut-through, oblivious, wormhole
routing techniques (e.g.: Intel Delta and Paragon). This ter-
minology and the characteristics of these networks are
reviewed below.

Virtual cut-through refers to the way messages pass through
intermediate network nodes between the source and desti-
nation nodes. Routing logic on intermediate nodes detects
the message destination encoded into the message header,
and forwards the message to a neighboring node without in-
terrupting the intermediate node’s processor.

A network that has fixed, deterministic message routing
paths for any source-destination node pair, is referred to as
oblivious. In contrast, an adaptive network routes a message
based on the utilization of local paths.

A wormhole routing network establishes a connection be-
tween the source and destination nodes through which the

3

40

60

80

100

120

140

160

180

200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

3D Mesh , 512 Nodes
2D Mesh , 256 Nodes

3D Torus , 512 Nodes
2D Torus , 256 Nodes

Normalized Throughput

A
v
e
r
a
g
e

L
a
t
e
n
c
y

Fig. 6 - Average latency vs. normalized throughput

(adapted from [Ngai89])

Glossary of abbreviations:

a dimension of a mesh network
b bisection bandwidth
c channel bandwidth for one link in a network
d volume data size - number of samples
h average cache hit ratio
k edge length of a network
m redistribution size - amount of data moved per frame
n number of nodes
r replication factor - number of copies of the volume

data stored in the system
p number of pixels in an image
q network injection bandwidth at a node
t time consumed per frame

routing patterns that approximate the random distribution
used to characterize network performance. A fine-grain ran-
domly interleaved block data distribution achieves this and
makes the redistribution size view-independent [Nieh92].
This data distribution is the context for the remainder of sec-
tion 4.

4.1.1 Redistribution Costs
Redistribution size is affected by replication of the data

set. Define a data size d and a repl ication factor r
 (1 ≤ r ≤ n) where r is the number of copies of the data stored
in the system. Each node needs about 1/n’th of the data to
render its assigned region. Nodes have (r d/n) randomly
located data points in their local memory, and of those, (r
d/n2) points are needed for rendering their assigned region.
Redistribution size is

mredist d r d/n (5)

If r = n, every node has a complete copy of the data and the
redistribution size is zero. If only one copy of the data
resides in the system r = 1 and the redistribution size is d
d/n. The redistr ibut ion t ime on a 2D mesh under a
normalized load of 0.3 is

t2Dredist mredist / (0.3 n qmesh)
 (d r d/n) / (1.2 n c/k)
 (d r d/n) / (1.2 n1/2 c) (6)

Network throughput is O(n1/2), so if n is scaled in proportion
to d, throughput increases too slowly to maintain constant
redistribution time. Toroidal 2D topologies exhibit the same
behavior except for a factor of four in their throughput. This
is the expected behavior of mesh networks the average
injection bandwidth approaches zero as the mesh size
increases.

The throughput of a 3D mesh of n nodes is n1/6 greater than
a 2D mesh for the same latency, so

t3Dredist (d r d/n) / (1.2 n2/3 c) (7)

Equation 7 shows that 3D topologies scale only slightly
better than their 2D counterparts (Eq. 6) for this class of
algorithms.

4.1.2. Observations
The scaling of redistribution time for image partition

algorithms with static data distributions on mesh networks is
summarized as
a) when d and n are increased propor t iona l ly the
redistribution time increases, and
b) for constant d and increasing n the redistribution time
decreases.

btorus = 2 c n / k (2)

where c is the bandwidth of a single communication
channel. Toroidal topologies have additional wrap-around
connections that double the mesh bisection for a given k and
n.

Under steady state conditions, network throughput equals
the applied load. As the applied load increases beyond what
the network can deliver, messages are queued at the source
and delayed without bound; this source queueing time is
separate from the network latency measure. Throughput in
figure 6 is normalized to the maximum load that saturates
the bisection bandwidth. All nodes inject fixed-length mes-
sages into the network at a uniform rate and to uniformly
distributed destinations. The network is bidirectional with
separate paths for message flow in opposite directions.
Nodes on each side of the bisection send one-half of their
messages across the bisection. An injection bandwidth q at
each node saturates the bisection paths when

qmesh = 4 c / k (3)
qtorus = 8 c / k (4)

Since a torus has twice the bisection bandwidth of a mesh
with identical dimensions, the injection bandwidth required
to saturate the bisection is also doubled. At this saturation
load, the aggregate bandwidth injected into the network is n
q, which represents a normalized load of 1.0. The normal-
ized load and normalized throughput are a fraction of the
saturation load.

Communication times are estimated in this paper under the
assumption that c is sufficient to keep the normalized load
and throughput ≤ 0.3 for meshes and ≤ 0.6 for tori. Under
these conditions the average latency is roughly equal in ei-
ther network of size n.

4. Parallel Algorithm Performance
Three classes of parallel algorithms are considered be-

cause of their intrinsically different redistribution costs:
image partitions with static data, image partitions with dy-
namic data, and object partitions.

4.1. Image Partition with Static Data Distribution
In this class of algorithms, nodes are assigned one or

more subsets of image lattice points to compute. Often
shafts subsets are used which equates to assigning screen re-
gions to nodes [Chal91] [Corr92] [Mont92] [Nieh92]
[Vézi92] [Yoo91]. Data subsets are distributed among the
nodes in a static distribution — a specified data point is al-
ways stored in the same node’s local memory. To render
their region(s), nodes access remote or local data as neces-
sary (Fig. 2) based on the current view transformation.
Interleaved static data distributions produce redistribution

4

changes. This differs from the use of caches with a static
data distribution in that there is no assigned node that will
always have a particular data value. For a dynamic data al-
gorithm all of a node’s local data memory is treated as cache,
and access to a particular data point is made to the node(s)
whose cache had it last frame. No implementations of this
class of algorithms have been reported.

The main advantage of a dynamic distribution over a static
one is that the injection bandwidth supported for each node
remains constant for all system sizes. By matching the net-
work and partition dimensions, and mapping neighboring
image lattice subsets to neighboring nodes on the network,
communication can be limited to adjacent nodes only. Ad-
jacent nodes are defined as having a routing distance of one
or zero along each dimension of the network between them.
Network throughput between adjacent nodes is within a con-
stant factor of nearest-neighbor throughput due to the
bounded distance between nodes. Network throughput for
adjacent-node communication is proportional to n.

4.2.1. Redistribution Costs
View changes must be bounded to ensure that data sub-

sets migrate no farther than adjacent nodes. Figures 7 - 9
show experimentally measured redistribution sizes as a
function of an incremental rotation about one or more axes.
A 643 data set is transformed by the rotation angle given on
the abscissa. Transformed data points that cross image lat-
tice subset boundaries are counted towards redistribution.
Figures 7 - 9 have best-case and worst-case rotations for
slab, shaft, and block subsets on 1D, 2D, and 3D mesh to-
pologies, respectively. Average node redistribution size is
plotted, but the position of a node’s image lattice subset rel-
ative to the axis of rotation affects the redistribution size at
that node.

Slab distributions (Fig. 7) show an approximate doubling of

Computation time for rendering has not been addressed, but
regardless of the rendering method, the growth of redistri-
bution time as d and n increase together will eventually limit
overall system performance. Alternatively, a faster (more
expensive) network must be provided as the system size is
increased.

Section 1 described how rendering efficiencies can reduce
redistribution size. It may also be lowered by using large
caches to take advantage of image and temporal coherence
[Corr92]. Cached values from the previous frame are likely
to be needed for the current frame. With caches the redis-
tribution costs in Eqs. 5 - 7 are modified by setting r = nh,
where h is the average hit ratio of the caches.

4.2. Image Partition with Dynamic Data Distribution
This class of parallel algorithms differs from all others

in that data migrates among nodes in response to view

5

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10

2x2x2 = 8 nodes
4x4x4 = 64 nodes
8x8x8 = 512 nodes

1D Rotation 3D Rotation

Degrees of Rotation

A
ve

ra
ge

 R
ed

is
tri

bu
tio

n
S

iz
e

(p
er

 n
od

e)

Fig. 9 - Redistribution with blocks on 3D network

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10

1D Rotation 2D Rotation
2x1x1 = 2 nodes
4x1x1 = 4 nodes
8x1x1 = 8 nodes
16x1x1 = 16 nodes

Degrees of Rotation

A
ve

ra
ge

 R
ed

is
tri

bu
tio

n
S

iz
e

(p
er

 n
od

e)

Fig. 7 - Redistribution with slabs on 1D network

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10

1D Rotation 3D Rotation
2x2x1 = 4 nodes
4x4x1 = 16 nodes
8x8x1 = 64 nodes
16x16x1 = 256 nodes

Degrees of Rotation

A
ve

ra
ge

 R
ed

is
tri

bu
tio

n
S

iz
e

(p
er

 n
od

e)

Fig. 8 - Redistribution with shafts on 2D network

4.3.1. Data Distribution Shape
Figures 10 - 12 are graphs of the average, per-node, re-

distribution size for different data subsets over a range of
rotation angles. These graphs are experimentally obtained
using a 643 data size and a 1282 screen size. Rays are traced
through the data subsets and the number of subsets encoun-
tered is recorded. The aggregate number of data subsets the
rays pass through is the minimum redistribution size. The
view transformation is affine and formulated so that a rota-
tion of zero degrees produces a full-screen image of the data.
Based on the data subset orientations in figure 5, all 1D ro-
tations (Figs. 10 - 12) specified by the abscissas are applied
about the horizontal axis. The 2D shaft rotations (Fig. 11)
create a worst-case by applying a constant 90° vertical axis
rotation in addition to the variable horizontal axis rotation.
The 3D block rotations (Fig. 12) create a worst-case by ap-
plying the abscissa angle equally about all three axes.

average redistribution size between two and sixteen nodes.
This is due to the fact that for n nodes, there are n-1 bound-
aries for data to migrate across. For large n, the average
redistribution size remains constant. The downward curve
in the sixteen node case is caused by a rotation angle large
enough to cause data to migrate beyond adjacent regions.
With slabs cut perpendicular to a single axis of rotation there
is no redistribution. The 1D rotation data in figure 7 corre-
sponds to rotation about an axis lying in plane of the slabs.
The 2D rotation data in figure 7 is equivalent to 3D rotation
and represents the worst-case redistribution size for a given
angle applied successively about each axis.

Shaft (Fig. 8) and block (Fig. 9) distributions show a de-
crease in average redistribution size as n increases. In
figures 8 and 9 the 1D and 3D rotations cause minimal and
maximal redistribution size, respectively.

4.2.2. Observations
The redistribution size for a given rotation is propor-

tional to the data size. When d and n increase proportionally,
the net effect is still to increase the average redistribution
size. For example, with a block distribution under 3D rota-
tion, increasing the number of nodes from 8 to 64 decreases
the average redistribution size to about 1/3 while the data
size increases by a factor of eight producing a net factor of
8/3 increase at each node. In order to maintain a constant
average redistribution size as d and n get larger, the rotation
angle must decrease.

4.3. Object Partition
In object partition algorithms (Fig. 3) nodes compute

images of their local data subset and redistribute the local
images among themselves to combine them into a final im-
age [Hsu93] [Ma93] [Cama93] [Chal91] [Yoo91]. The view
point and aspect ratio of the data subsets affect the redistri-
bution size. Slabs, shafts, and blocks vary from highly
unbalanced aspect ratios to perfectly balanced ratios. As the
view point changes, local images cover varying amounts of
the screen, thereby varying the number of pixels moved in
redistribution.

6

0

1000

2000

3000

4000

5000

0 15 30 45 60 75 90

1D Rotation 3D Rotation
2x2x2 = 8 nodes
4x4x4 = 64 nodes
8x8x8 = 512 nodes

Degrees of Rotation

A
ve

ra
ge

 R
ed

is
tri

bu
tio

n
S

iz
e

(p
er

 n
od

e)

Fig. 12 - Redistribution with block data subsets

0

2000

4000

6000

8000

10000

0 15 30 45 60 75 90

1D Rotation 2D Rotation

2x2x1 = 4 nodes
4x4x1 = 16 nodes
8x8x1 = 64 nodes
16x16x1 = 256 nodes

Degrees of Rotation

A
ve

ra
ge

 R
ed

is
tri

bu
tio

n
S

iz
e

(p
er

 n
od

e)

Fig. 11 - Redistribution with shaft data subsets

0

2000

4000

6000

8000

10000

12000

14000

16000

0 15 30 45 60 75 90

2 nodes
4 nodes
8 nodes
16 nodes
32 nodes

Degrees of Rotation

A
ve

ra
ge

 R
ed

is
tri

bu
tio

n
S

iz
e

(p
er

 n
od

e)

Fig. 10 - Redistribution with slab data subsets

tion time yields

t2Dredist ≅ 4 d2/3 (1 − 1/n) / (1.2 n1/6 c) (12)
t3Dredist ≅ 4 d2/3 (1 − 1/n) / (1.2 n1/3 c) (13)

When d and n are increased proportionately, these expres-
sions exhibit the same asymptotic behavior as the image
partition times given by equations 6 and 7, but for a given
data set size, the redistribution time of an object partition is
lower by a factor of ~(d/n)1/3 due to the local compositing
that occurs before redistribution.

4.3.3. Observations
Redistribution costs for object partitions are much low-

er than for image partition algorithms, but there are disad-
vantages to object partitions in other respects. Load balance
is difficult to maintain especially when the view point zooms
in on a portion of the data set. Potentially, only one node’s
data subset is visible making it responsible for rendering the
entire image. There is a complementary case with image
partition algorithms when the view point recedes so that
much of the data falls into one node’s screen region. The
application dictates the probability of either case occurring
and therefore should influence the selection of a parallel
algorithm.

Another drawback to object partitions is a loss of rendering
efficiency. Nodes in an object partition have no knowledge
of whether their data is obscured or not. Portions or all of a
local image not seen in the final image represent wasted
computation effort.

5. Network Performance on Touchstone Delta
The Touchstone Delta with its 2D mesh network is used

to experimentally verify the predicted redistribution costs
for object partitions. A test program is used to measure only
the redistribution costs without including any rendering
costs. The program computes the bounding rectangle of
each node’s local image and pixels are redistributed accord-
ing to an interleaved static assignment of screen regions.
Pixels are received by the destination nodes, but composit-
ing times are not included in the test times.

Region assignments are varied to test for sensitivity to any
pattern of assignment. Twenty different assignments were
tested and the variations in redistribution time are small
(<20%) and not repeatable. These variations are thought to
be due to network I/O traffic through the machine partition
caused by other user’s programs. (The Delta supports mul-
tiple users in separate mesh partitions.)

An object partition with a block data distribution is mapped
onto the smallest "near-square" 2D mesh with sufficient
nodes. A square, or near-square mesh partition is used to
maintain the largest bisection possible. The 3D to 2D map-

A block data distributions produces the lowest maximum
redistribution size and achieve the most view-independence.
The slab and shaft distributions have slightly lower best-case
figures, but their strong view-dependence makes their worst-
cases much higher. Therefore, blocks are considered the op-
timal data distribution.

4.3.2. Redistribution Costs
The local image size at each node in a block data distri-

bution is approximately p n−2/3 pixels, where p is the number
of pixels in the final image. The local images must be com-
bined properly to produce the final image. To achieve good
load balance and network utilization, many small screen re-
gions are assigned to each node in a random interleaved
distribution. Approximately 1/n’th of each node’s local im-
age pixels are composited into the same node’s assigned
compositing regions so the total redistribution size is

mredist ≅ p n1/3 (1 − 1/n) (8)

Use of interleaved compositing regions also randomizes the
redistribution network traffic, thereby matching the assump-
tions of the network performance model. The redistribution
time for a 2D and 3D mesh under a normalized load of 0.3 is

t2Dredist ≅ mredist / (0.3 n qmesh)
≅ p n1/3 (1 − 1/n) / (0.3 n 4 c / k)
≅ p (1 − 1/n) / (1.2 n1/6 c) (9)

t3Dredist ≅ p n1/3 (1 − 1/n) / (0.3 n 4 c / k)
≅ p (1 − 1/n) / (1.2 n1/3 c) (10)

Toroidal topologies exhibit the same behavior except for a
factor of four increase in network throughput. If the screen
size p is held constant as the number of nodes increases, the
redistribution size increases but the network throughput in-
creases even faster so the time for redistribution actually
decreases. Furthermore, since equations 9 and 10 are inde-
pendent of d, both d and n may be increased without increas-
ing the redistribution time. This behavior is better suited to
large scalable systems than that of image partitions. Experi-
mental verification is shown in section 5 with tests run on
the Touchstone Delta.

The above analysis holds for a constant screen size. As data
size increases it may be necessary to increase the screen size
to prevent undersampling. Adopting the convention that
p1/2 = 2d1/3 causes the local image size at each node to be-
come a function of the data size (4 d2/3 n−2/3) making the total
redistribution size

mredist ≅ 4 d2/3 n1/3 (11)

Substituting equation 11 into the expressions for redistribu-

7

plemented on the Touchstone Delta. The algorithm uses a
block data distribution. Local images of test data are ren-
dered by ray casting to provide perspective views (Fig. 15).
The performance of this implementation is tabulated in fig-
ure 16 as the frame rates achieved for various data and
system sizes. In all cases the screen size is 2562 pixels. The
data is analytically generated from Gaussian point and line
sources sampled at different densities. The reader is referred
to [Neum93] for further details about the isosurface shading
and load balancing used in this implementation.

The Delta provides access to a frame buffer through an I/O
node that feeds a HIPPI channel. Although the renderer as-
sembles a complete 2562 image in one node, it is not sent to
the HIPPI frame buffer I/O node during these tests since up-
dating the frame buffer limits the frame rate to about four
Hertz for this image size.

6.1. Scaling
Performance scaling for this and other object partition

implementations [Ma93] is lower than one might expect
when nodes are added for a constant data size. This is par-
tially due to the loss of rendering efficiency obtained from
adaptive ray termination. Note the slower frame rate of the
43 system relative to the 33 system size and the low sensi-
tivity to data size. At each node the implementation uses
adaptive sampling, adaptive ray termination, and an octree
encoding of the minimum and maximum data value in each
octant. The effectiveness of the speedups vary for different

ping is simply done by enumerating the partition blocks in x,
y, z-order and assigning them to the corresponding partition
node number. For example, a 2×2×2 block partition fits into
a 3×3 mesh with blocks 〈0,0,0〉, 〈0,0,1〉, … , 〈1,1,1〉 assigned
to nodes 0, 1, 2, …, 7, respectively. In this example case, the
last node (node 8) is unused and doesn’t contribute to the
test.

Figure 13 shows the growth of redistribution size as the
number of nodes increases for three fixed image sizes. Fig-
ure 14 shows the measured redistribution time shrinking
over the same increase in the number of nodes. These two
figures agree with the predicted behavior for object parti-
tions and mesh networks — as n increases the redistribution
size also increases, but the redistribution time decreases.

6. Volume Rendering on Touchstone Delta
An object partition volume rendering algorithm was im-

8

Data size System 23 33 43 53 63

643 1.8 2.9 2.7 5.0

1283 1.6 2.6 2.5 4.2 5.1

1923 2.3 4.1 4.9

Fig. 16 - Touchstone Delta rendering performance
(frames per second)

Fig. 15 - Isosurface rendering of test data

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

512x512 image

256x256 image

128x128 image

R
ed

is
tr

ib
ut

io
n

T
im

e
(in

 s
ec

on
ds

)

3x3 6x5 8x8 12x11 15x15
Block partition
Mesh dimension

2x2x2 3x3x3 4x4x4 5x5x5 6x6x6

Fig. 14 - Redistribution times on the Touchstone Delta

0.2M

0.4M

0.6M

0.8M

1.0M

1.2M

1.4M

1.6M

512x512 image

256x256 image

128x128 image

R
ed

is
tr

ib
ut

io
n

S
iz

e
(a

gg
re

ga
te

 p
ix

el
s)

3x3 6x5 8x8 12x11 15x15
Block partition
Mesh dimension

2x2x2 3x3x3 4x4x4 5x5x5 6x6x6

Fig. 13 - Redistribution sizes on the Touchstone Delta

factor so memory is efficiently used, and a low bandwidth
(low cost) mesh network is sufficient for either approach.
The image partition supports rendering efficiencies but the
caching adds complexity to the nodes. An object partition
is less efficient at rendering, but its lower complexity and
redistribution costs are better suited to systems with small-
er, more numerous processors.

8. References
[Cama93] Emilio Camahort and Indranil Chakravarty. "Integrating Vol-

ume Rendering on Distributed Memory Architectures." 1993
Parallel Rendering Symposium, 89-96, October 1993, ACM
Proceedings.

[Chal91] Judy Challinger. "Parallel Volume Rendering on a Shared-
Memory Multiprocessor." Computer and Information Sciences, UC
Santa Cruz, Tech Report CRL-91-23, Revised March 1992.

[Corr92] Brian Corrie and Paul Mackerras. "Parallel Volume Render-
ing and Data Coherence on the Fujitsu AP1000." Department of
Computer Science, The Australian National University, Tech Report
TR-CS-92-11, August 1991.

[Hsu93] William M. Hsu. "Segmented Ray Casting for Data Parallel
Volume Rendering." 1993 Parallel Rendering Symposium, 7-14,
October 1993, ACM Proceedings.

[Ma93] Kwan-Liu Ma, James S. Painter, Charles D. Hansen, Micheal
F. Krogh. "A Data Distributed Algorithm for Ray-Traced Volume
Rendering." 1993 Parallel Rendering Symposium, 15-22, October
1993, ACM Proceedings.

[Mont92] C. Montani, R. Perego, and R. Scopigno. "Parallel Volume
Visualization on a Hypercube Architecture." 1992 Workshop on
Volume Visualization, 9-16, October 1992. Workshop Proceedings.

[Neum93] Ulrich Neumann. "Volume Reconstruction and Parallel Ren-
dering Algorithms: A Comparative Analysis." Department of
Computer Science, UNC at Chapel Hill, Tech Report TR93-017,
May 1993. Ph.D. Dissertation.

[Ngai89] John Y. Ngai. "A Framework for Adaptive Routing in Multi-
computer Networks." Department of Computer Science, California
Institute of Technology, Tech Report CS-TR-89-09, May 1989.
Ph.D. Dissertation.

[Nieh92] Jason Nieh and Marc Levoy. "Volume Rendering on Scalable
Shared-Memory MIMD Architectures." 1992 Workshop on Volume
Visualization, 17-24, October 1992. Workshop Proceedings.

[Shu91] Renben Shu and Alan Liu. "A Fast Ray Casting Algorithm
Using Isotriangular Subdivision." IEEE Visualization’91, 232-237,
October 1991. Conference Proceedings.

[Vézi92] Guy Vézina, Peter A. Fletcher, and Philip K. Robertson. "Vol-
ume Rendering on the MasPar MP-1." 1992 Workshop on Volume
Visualization, 3-8, October 1992. Workshop Proceedings.

[Yoo91] Terry S. Yoo, Ulrich Neumann, Henry Fuchs, Stephen M. Piz-
er, Tim Cullip, John Rhoades, Ross Whitaker. "Achieving Direct
Volume Visualization with Interactive Semantic Region Selection."
 IEEE Visualization’91, 58-65, October 1991. Conference
Proceedings.

data block sizes and numbers. Adaptive sampling is done
by the isosceles-triangle recursive subdivision method
[Shu91]. Nodes construct a separate octree for their data
block. The octree "fit" of the features in the data varies
with block dimension and placement. Adaptive ray termi-
nation only effects local image rendering, so as the depth
complexity of the partition goes up and the data blocks get
smaller its effectiveness diminishes. Although adaptive
ray termination becomes less efficient as the number of
blocks (and nodes) increases, its low overhead makes it
worthwhile in all the cases tested.

Much better scaling is observed for the underlined cases
(Fig. 16) where the data and system sizes are varied
proportionally. In these cases each node is assigned a 323
data block and the system speed increases by more than a
factor of two. This is at least partially due to the shrinking
size of the local images as nodes are added.

The implementation illustrate a case where an object par-
tition algorithm succeeds in reducing the redistribution
costs to an insignificant level. A 63 system computes a
2562 image in about 200 ms. The measured redistribution
time in that case is under 10 ms. consuming under five per-
cent of the total frame time.

7. Summary and Discussion
Parallel volume rendering algorithms inherently re-

quire communication of data. Parallel algorithms may be
grouped into three classes each characterized by unique
redistribution costs. Redistribution sizes for three classes
of parallel algorithms are derived from analysis and
simulations. A network model is used to estimate the time
required for redistribution on mesh networks. The perfor-
mance of object partition algorithms is verified by tests on
the Touchstone Delta.

Further rendering speedups and hardware accelerators are
clearly important areas of future research. A large portion
of rendering time is consumed to reconstruct and resample
the volume. Dedicated 3D texture hardware accelerates
this process in new graphics systems. These systems pro-
vide high performance volume rendering through image
partition parallelism, but the scalability of these systems
for larger data and even higher performance is in question
since current designs completely replicate the data at each
processing node (r = n) to eliminate redistribution costs.
This research raises the question of whether a more cost
effective approach can be used to build general purpose or
dedicated hardware capable of scaling to very large data
sizes and high performance levels. In my opinion the an-
swer is likely to lie to a highly parallel system with hun-
dreds or perhaps thousands of simple processors. Based on
their low redistribution costs, two algorithms seem likely
contenders for such systems: image partitions with static
data and large caches, or object partitions with block data
distributions. Neither approach requires a high replication

9

