
into n regions and assigns each node a separate region to 
render.  This parallel algorithm does not specify what ren-
dering method is used by each node to render its region.  By 
considering parallel algorithms and rendering methods in-
dependently, the performance ramifications of each issue are 
separately more clearly.

1.2.  Redistribution
Communication costs are an important issue for parallel 

system and software designers to consider.  The selection of 
a parallel algorithm has a major impact on the communica-
tion requirement between nodes.  Unless all nodes have a 
local copy of the data, or viewing positions are severely re-
stricted, a parallel volume rendering algorithm intrinsically 
requires communication between compute nodes.  The 
transfer between nodes of volume or image data necessitated 
by a parallel algorithm is defined here as redistribution.  Re-
distribution costs are measured as the quantity of data 
transferred (redistribution size)  and the time consumed by 
moving it over the network (redistribution time).  Replica-
tion of data at each node is wasteful for large numbers of 
nodes and impossible when data size exceeds local memory 
size.  Restricting the viewing positions limits one’s ability to 
explore the data.  Therefore, in most practical cases, redis-
tribution must occur.  

The upper bound of redistribution size is independent of the 
rendering method.  The choice of rendering method may re-
duce the actual requirement.  For example, nodes that render 
by ray casting may adaptively terminate rays and therefore 
not access portions of the data that would otherwise be 
needed.  Such efficiencies are data dependent but often 
significant.  In this analysis, the peak communication re-
quirement is derived as an upper bound with the understand-
ing that rendering efficiencies may reduce this by some 
factor.  

1.3.  Mesh Networks
Communication between nodes in multicomputers is 

frequently through two and three-dimensional mesh-
connected networks. (E.g.: Stanford Dash,  Intel Delta and 
Paragon, MIT J-Machine, Caltech Mosaic.)  The perfor-
mance of these communication networks with parallel 
volume rendering algorithms is one focus of this paper.  
Mesh networks scale easily so they are a practical choice for 

Abstract
This paper examines the many ways to structure parallel 

volume rendering algorithms and analyzes the communica-
tion costs associated with them.  Parallel volume rendering 
algorithms are enumerated through a taxonomy which sorts 
them into two main classes that exhibit similar communica-
tion costs: image and object partitions.  The intrinsic com-
munication costs for algorithms in these classes are analyzed 
independent of an implementation.  Given a network model 
for a target system, an algorithm’s intrinsic communication 
cost can be used to estimate the time consumed by commu-
nication and the effect upon communication time as the 
system size and data size are varied.  Communication cost 
and time are measured on the Intel Touchstone Delta to ver-
ify the predicted scaling behavior.  The results show that, for 
a fixed screen size, systems with mesh networks scale well 
for object partition algorithms − the time required for com-
munication decreases as the data and system sizes increase.

1.  Introduction
The computational expense of volume rendering moti-

vates the development of parallel implementations on 
multicomputers. Through parallelism, higher frame rates are 
achieved which provide more natural viewing control and 
enhanced comprehension of three dimensional structure.  
Many parallel implementations have been reported, but no 
framework has been established to allow comparisons of 
their relative merits independent of their host hardware.  
This paper enumerates and classifies parallel volume ren-
dering algorithms suitable for multicomputers with distrib-
uted memory and a communication network.  Communica-
tion costs are determined for classes of parallel algorithms 
by considering their inherent communication requirements.  
This study of algorithms and their communication costs 
should be useful to designers and implementers of parallel 
volume rendering hardware and software systems.

1.1.  Algorithms and Rendering Methods
There is a distinction between a parallel volume ren-

dering algorithm and a volume rendering method like ray 
casting or splatting.  A parallel algorithm describes how data 
and computation is distributed among the resources of a 
system.  In such a description, the rendering method is not an 
issue and may be unspecified.  For example, a simple paral-
lel algorithm for a system with n nodes divides the screen 
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this volume are aligned behind the image pixels along the 
view direction and are referred to as the image lattice.  The 
work assigned to a node is based on either its assigned object 
or image lattice subset .  This task assignment distinction 
creates two main classes of parallel algorithms, image par-
titions and object partitions.  In an image partition (Fig. 2), 
nodes are assigned volumes of image lattice points to 
compute.  Redistribution occurs as volume data moves be-
tween nodes to facilitate interpolation of the  assigned 
points.  In an object partition (Fig. 3), each node renders a 
local color and opacity image of its assigned data subset.  
Redistribution occurs as local images are moved to facilitate 
their combining into a complete image.  Member algorithms 
in each class differ in the shapes of the data and image sub-
sets, the subset’s static or dynamic nature over time, and the 
spatial relationship of the subsets to each other [Neum93].  
A taxonomy (Fig. 4) enumerates the possible algorithms 
graphically.  Note that the choice of image or object order 
rendering methods is also a variable.

2.1.  Lattice Subsets
Subsets of the object or image lattices may be distributed 
among nodes in three shapes: slabs, shafts, and blocks (Fig. 
5).  When data is redistributed, the subset size is the granu-
larity of the transfer.  To control transfer size there may be 
more data subsets than nodes;  a node may store multiple 

systems ranging from tens to thousands of nodes.  This paper 
provides models for predicting the redistribution costs in-
curred by different parallel algorithms on a range of mesh 
system sizes.  The models predict that, for a fixed image 
size, the class of object partition algorithms requires de-
creasing communication time as the data size and number of 
nodes increases.  This scaling behavior makes highly paral-
lel systems feasible with thousands of nodes connected by a 
modest 2D mesh network without loss of performance due 
to communication .  

2.  Parallel Algorithms
In parallel volume rendering algorithms subsets of two 

volumes must be distributed over the nodes of a system (Fig. 
1).  The  data to be visualized is one volume and referred to 
as the object lattice. The other volume is the set of points 
whose values are computed to produce an image.  Points in 
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message flows.  If a needed path is already occupied, 
progress toward establishing the connection is blocked until 
the needed path is relinquished.  Once a connection is es-
tab l ished, the message (or packet ) f lows wi thout 
interruption. A partially-routed blocked message occupies 
paths that may in turn block other messages.

John Ngai [Ngai89] characterized these networks while pro-
posing adaptive enhancements.  Some of Ngai’s test results 
for 2D and 3D mesh and torus topologies are reproduced in 
figure 6.  The test conditions of uniformly-random message 
destinations and fixed-length single-packet messages are 
reasonable simplifications of the conditions encountered in 
some of the parallel algorithms considered here.  The major 
performance aspects of these networks are the throughput 
and average latency of messages as a function of applied 
load and bisection bandwidth.  
   
Throughput is a measure of aggregate network message de-
livery bandwidth.

Latency is the delay from a source node’s injection of a mes-
sage header into the network until the complete message 
exits the network at the receiving node.

Applied load is the aggregate message injection bandwidth 
into the network.

Bisection bandwidth is the aggregate peak bandwidth 
through the minimal set of routing channels that, when re-
moved, splits the network into two equal and disjoint parts. 

For a network with n nodes, let n = ka, where k is even and a 
is the dimension of the mesh.  The bisection width of a mesh 
is n / k channels.  The bisection bandwidth of a mesh and 
torus is

bmesh = c n / k (1)

subsets in its local memory.  If these multiple subsets are 
spatially adjacent, (e.g., multiple slices forming a slab) they 
are classified as contiguous.  Any non-adjacent arrangement 
is classified as interleaved.  If the distribution of subsets var-
ies between frames, the distribution is dynamic.  An un-
changing distribution is static.

Because their redistribution costs differ, image partitions are 
subdivided into two different subclasses, one with static data 
distributions, and the other with dynamic data distributions.  
This distinction is not made for object partitions since static 
and dynamic data distributions exhibit the same redistribu-
tion costs.  The analysis of the redistribution costs for three 
classes of algorithms is sufficient to cover all the approaches 
shown in the taxonomy.

3.  Network Model
A network model is needed to estimate the redistribu-

tion time for a particular system once the redistribution size 
for an algorithm is known.  This section develops a model 
for mesh and toroidal networks commonly used in 
multicomputers.  Current generation mesh and toroidal net-
works employ virtual cut-through, oblivious, wormhole 
routing techniques (e.g.: Intel Delta and Paragon).  This ter-
minology and the characteristics of these networks are 
reviewed below.

Virtual cut-through refers to the way messages pass through 
intermediate network nodes between the source and desti-
nation nodes.  Routing logic on intermediate nodes detects 
the message destination encoded into the message header, 
and forwards the message to a neighboring node without in-
terrupting the intermediate node’s processor.

A network that has fixed, deterministic message routing 
paths for any source-destination node pair, is referred to as 
oblivious.  In contrast, an adaptive network routes a message 
based on the utilization of local paths. 

A wormhole routing network establishes a connection be-
tween the source and destination nodes through which the 

3

40

60

80

100

120

140

160

180

200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

3D Mesh , 512 Nodes
2D Mesh , 256 Nodes

3D Torus , 512 Nodes
2D Torus , 256 Nodes

Normalized Throughput

A
v
e
r
a
g
e

L
a
t
e
n
c
y

Fig. 6 - Average latency vs. normalized throughput  

(adapted from [Ngai89])

Glossary of abbreviations:

a dimension of a mesh network
b bisection bandwidth
c channel bandwidth for one link in a network
d volume data size - number of samples
h average cache hit ratio
k edge length of a network
m redistribution size - amount of data moved per frame
n number of nodes 
r replication factor  - number of copies of the volume 

data stored in the system
p number of pixels in an image
q network injection bandwidth at a node
t time consumed per frame



routing patterns that approximate the random distribution 
used to characterize network performance.  A fine-grain ran-
domly interleaved block data distribution achieves this and 
makes the redistribution size view-independent [Nieh92].  
This data distribution is the context for the remainder of sec-
tion 4.

4.1.1  Redistribution Costs
Redistribution size is affected by replication of the data 

set.  Define a data size d and a repl ication factor r              
 (1 ≤ r ≤ n) where r is the number of copies of the data stored 
in the system.  Each node needs about 1/n’th of the data to 
render its assigned region.  Nodes have (r d/n) randomly 
located data points in their local memory, and of those, (r 
d/n2) points are needed for rendering their assigned region.  
Redistribution size is 

mredist  d  r d/n (5)

If r = n, every node has a complete copy of the data and the 
redistribution size is zero.  If only one copy of the data 
resides in the system r = 1 and the redistribution size is d  
d/n. The redistr ibut ion t ime on a 2D mesh under a 
normalized load of 0.3 is 

t2Dredist  mredist / (0.3 n qmesh)
 (d  r d/n) / (1.2 n c/k)
 (d  r d/n) / (1.2 n1/2 c) (6)

Network throughput is O(n1/2), so if n is scaled in proportion 
to d, throughput increases too slowly to maintain constant 
redistribution time.  Toroidal 2D topologies exhibit the same 
behavior except for a factor of four in their throughput.  This 
is the expected behavior of mesh networks  the average 
injection bandwidth approaches zero as the mesh size 
increases.

The throughput of a 3D mesh of n nodes is n1/6 greater than 
a 2D mesh for the same latency, so

t3Dredist  (d  r d/n) / (1.2 n2/3 c) (7)

Equation 7 shows that 3D topologies scale only slightly 
better than their 2D counterparts (Eq. 6) for this class of 
algorithms.  

4.1.2.  Observations
The scaling of redistribution time for image partition 

algorithms with static data distributions on mesh networks is 
summarized as
a) when d and n are increased propor t iona l ly the 
redistribution time increases, and
b) for constant d and increasing n the redistribution time 
decreases.

btorus = 2 c n / k (2)

where c is the bandwidth of a single communication 
channel.  Toroidal topologies have additional wrap-around 
connections that double the mesh bisection for a given k and 
n.

Under steady state conditions, network throughput equals 
the applied load.  As the applied load increases beyond what 
the network can deliver, messages are queued at the source 
and delayed without bound; this source queueing time is 
separate from the network latency measure.  Throughput in 
figure 6 is normalized to the maximum load that saturates 
the bisection bandwidth.   All nodes inject fixed-length mes-
sages into the network at a uniform rate and to uniformly 
distributed destinations.  The network is bidirectional with 
separate paths for message flow in opposite directions.  
Nodes on each side of the bisection send one-half of their 
messages across the bisection.  An injection bandwidth q at 
each node saturates the bisection paths when

qmesh = 4 c / k (3)
qtorus = 8 c / k (4)

Since a torus has twice the bisection bandwidth of a mesh 
with identical dimensions, the injection bandwidth required 
to saturate the bisection is also doubled.  At this saturation 
load, the aggregate bandwidth injected into the network is n 
q, which represents a normalized load of 1.0.  The normal-
ized load and normalized throughput are a fraction of the 
saturation load.  

Communication times are estimated in this paper under the 
assumption that c is sufficient to keep the normalized load 
and throughput  ≤ 0.3 for meshes and ≤ 0.6 for tori.  Under 
these conditions the average latency is roughly equal in ei-
ther network of size n.

4.  Parallel Algorithm Performance
Three classes of parallel algorithms are considered be-

cause of their intrinsically different redistribution costs: 
image partitions with static data, image partitions with dy-
namic data, and object partitions.

4.1.  Image Partition with Static Data Distribution
In this class of algorithms, nodes are assigned one or 

more subsets of image lattice points to compute.  Often 
shafts subsets are used which equates to assigning screen re-
gions to nodes [Chal91] [Corr92] [Mont92] [Nieh92] 
[Vézi92] [Yoo91].  Data subsets are distributed among the 
nodes in a static distribution — a specified data point is al-
ways stored in the same node’s local memory. To render 
their region(s), nodes access remote or local data as neces-
sary (Fig. 2) based on the current view transformation. 
Interleaved static data distributions produce redistribution 
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changes.  This differs from the use of caches with a static 
data distribution in that there is no assigned node that will 
always have a particular data value.  For a dynamic data al-
gorithm all of a node’s local data memory is treated as cache, 
and access to a particular data point is made to the node(s) 
whose cache had it last frame.  No implementations of this 
class of algorithms have been reported. 

The main advantage of a dynamic distribution over a static 
one is that the injection bandwidth supported for each node 
remains constant for all system sizes.  By matching the net-
work and partition dimensions, and mapping neighboring 
image lattice subsets to neighboring nodes on the network, 
communication can be limited to adjacent nodes only.  Ad-
jacent nodes are defined as having a routing distance of one 
or zero along each dimension of the network between them.  
Network throughput between adjacent nodes is within a con-
stant factor of nearest-neighbor throughput due to the 
bounded distance between nodes. Network throughput for 
adjacent-node communication is proportional to n.

4.2.1.  Redistribution Costs
View changes must be bounded to ensure that data sub-

sets migrate no farther than adjacent nodes.  Figures 7 - 9 
show experimentally measured redistribution sizes as a 
function of an incremental rotation about one or more axes.  
A 643 data set is transformed by the rotation angle given on 
the abscissa.  Transformed data points that cross image lat-
tice subset boundaries are counted towards redistribution. 
Figures 7 - 9 have best-case and worst-case rotations for 
slab, shaft, and block subsets on 1D, 2D, and 3D mesh to-
pologies, respectively.  Average node redistribution size is 
plotted, but the position of a node’s image lattice subset rel-
ative to the axis of rotation  affects the redistribution size at 
that node.

Slab distributions (Fig. 7) show an approximate doubling of 

Computation time for rendering has not been addressed, but 
regardless of the rendering method, the growth of redistri-
bution time as d and n increase together will eventually limit 
overall system performance.  Alternatively, a faster (more 
expensive) network must be provided as the system size is 
increased.

Section 1 described how rendering efficiencies can reduce 
redistribution size.  It may also be lowered by using large 
caches to take advantage of image and temporal coherence 
[Corr92].  Cached values from the previous frame are likely 
to be needed for the current frame.  With caches the redis-
tribution costs in Eqs. 5 - 7 are modified by setting  r = nh, 
where h is the average hit ratio of the caches. 

4.2.  Image Partition with Dynamic Data Distribution
This class of parallel algorithms differs from all others 

in that data migrates among nodes in response to view 
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Fig. 9 - Redistribution with blocks on 3D network
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4.3.1.  Data Distribution Shape
Figures 10 - 12 are graphs of the average, per-node, re-

distribution size for different data subsets over a range of 
rotation angles.  These graphs are experimentally obtained 
using a 643 data size and a 1282 screen size.  Rays are traced 
through the data subsets and the number of subsets encoun-
tered is recorded.  The aggregate number of data subsets the 
rays pass through is the minimum redistribution size.  The 
view transformation is affine and formulated so that a rota-
tion of zero degrees produces a full-screen image of the data. 
Based on the data subset orientations in figure 5, all 1D ro-
tations (Figs. 10 - 12) specified by the abscissas are applied 
about the horizontal axis. The 2D shaft rotations (Fig. 11) 
create a worst-case by applying a constant 90° vertical axis 
rotation in addition to the variable  horizontal axis rotation.  
The 3D block rotations (Fig. 12) create a worst-case by ap-
plying the abscissa angle equally about all three axes.  

average redistribution size between two and sixteen nodes.  
This is due to the fact that for n nodes, there are n-1 bound-
aries for data to migrate across. For large n, the average 
redistribution size remains constant.  The downward curve 
in the sixteen node case is caused by a rotation angle large 
enough to cause data to migrate beyond adjacent regions.   
With slabs cut perpendicular to a single axis of rotation there 
is no redistribution.  The 1D rotation data in figure 7 corre-
sponds to rotation about an axis lying in plane of the slabs.  
The 2D rotation data in figure 7 is equivalent to 3D rotation 
and represents the worst-case redistribution size for a given 
angle applied successively about each axis.

Shaft (Fig. 8) and block (Fig. 9) distributions show a de-
crease in average redistribution size as n increases.  In 
figures 8 and 9 the 1D and 3D rotations cause minimal and 
maximal redistribution size, respectively.  

4.2.2.  Observations
The redistribution size for a given rotation is propor-

tional to the data size.  When d and n increase proportionally, 
the net effect is still to increase the average redistribution 
size.  For example, with a block distribution under 3D rota-
tion, increasing the number of nodes from 8 to 64 decreases 
the average redistribution size to about 1/3 while the data 
size increases by a factor of eight producing a net factor of 
8/3 increase at each node.  In order to maintain a constant 
average redistribution size as d and n get larger, the rotation 
angle must decrease.

4.3.  Object Partition 
In object partition algorithms (Fig. 3) nodes compute 

images of their local data subset and redistribute the local 
images among themselves to combine them into a final im-
age [Hsu93] [Ma93] [Cama93] [Chal91] [Yoo91].  The view 
point and aspect ratio of the data subsets affect the redistri-
bution size.  Slabs, shafts, and blocks vary from highly 
unbalanced aspect ratios to perfectly balanced ratios.  As the 
view point changes, local images cover varying amounts of 
the screen, thereby varying the number of pixels moved in 
redistribution.  
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Fig. 12 - Redistribution with block data subsets
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Fig. 11 - Redistribution with shaft data subsets
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tion time yields

t2Dredist ≅ 4 d2/3 (1 − 1/n) / (1.2 n1/6 c) (12)
t3Dredist ≅ 4 d2/3 (1 − 1/n) / (1.2 n1/3 c) (13)

When d and n are increased proportionately, these expres-
sions exhibit the same asymptotic behavior as the image 
partition times given by equations 6 and 7, but for a given 
data set size, the redistribution time of an object partition is 
lower by a factor of ~(d/n)1/3 due to the local compositing 
that occurs before redistribution.

4.3.3.  Observations
Redistribution costs for object partitions are much low-

er than for image partition algorithms, but there are disad-
vantages to object partitions in other respects.  Load balance 
is difficult to maintain especially when the view point zooms 
in on a portion of the data set.  Potentially, only one node’s 
data subset is visible making it responsible for rendering the 
entire image.  There is a complementary case with image 
partition algorithms when the view point recedes so that 
much of the data falls into one node’s screen region.  The 
application dictates the probability of either case occurring 
and therefore should influence the selection of a parallel 
algorithm.

Another drawback to object partitions is a loss of rendering 
efficiency.  Nodes in an object partition have no knowledge 
of whether their data is obscured or not.  Portions or all of a 
local image not seen in the final image represent wasted 
computation effort.

5.  Network Performance on Touchstone Delta
The Touchstone Delta with its 2D mesh network is used 

to experimentally verify the predicted redistribution costs 
for object partitions.  A test program is used to measure only 
the redistribution costs without including any rendering 
costs.  The program computes the bounding rectangle of 
each node’s local image and pixels are redistributed accord-
ing to an interleaved static assignment of screen regions.  
Pixels are received by the destination nodes, but composit-
ing times are not included in the test times. 

Region assignments are varied to test for sensitivity to any 
pattern of assignment.  Twenty different assignments were 
tested and the variations in redistribution time are small 
(<20%) and not repeatable.  These variations are thought to 
be due to network I/O traffic through the machine partition 
caused by other user’s programs.  (The Delta supports mul-
tiple users in separate mesh partitions.)

An object partition with a block data distribution is mapped 
onto the smallest "near-square" 2D mesh with sufficient 
nodes.  A square, or near-square mesh partition is used to 
maintain the largest bisection possible.  The 3D to 2D map-

A block data distributions produces the lowest maximum 
redistribution size and achieve the most view-independence. 
The slab and shaft distributions have slightly lower best-case 
figures, but their strong view-dependence makes their worst-
cases much higher.  Therefore, blocks are considered the op-
timal data distribution.  

4.3.2.  Redistribution Costs
The local image size at each node in a block data distri-

bution is approximately p n−2/3 pixels, where p is the number 
of pixels in the final image.  The local images must be com-
bined properly to produce the final image.  To achieve good 
load balance and network utilization, many small screen re-
gions are assigned to each node in a random interleaved 
distribution.  Approximately 1/n’th of each node’s local im-
age pixels are composited into the same node’s assigned 
compositing regions so the total redistribution size is

mredist ≅ p n1/3 (1 − 1/n) (8)

Use of interleaved compositing regions also randomizes the 
redistribution network traffic, thereby matching the assump-
tions of the network performance model.  The redistribution 
time for a 2D and 3D mesh under a normalized load of 0.3 is

t2Dredist ≅ mredist / (0.3 n qmesh)
≅ p n1/3 (1 − 1/n) / (0.3 n 4 c / k)
≅ p (1 − 1/n) / (1.2 n1/6 c) (9)

t3Dredist ≅ p n1/3 (1 − 1/n) / (0.3 n 4 c / k)
≅ p (1 − 1/n) / (1.2 n1/3 c) (10)

Toroidal topologies exhibit the same behavior except for a 
factor of four increase in network throughput.  If the screen 
size p is held constant as the number of nodes increases, the 
redistribution size increases but the network throughput in-
creases even faster so the time for redistribution actually 
decreases.  Furthermore, since equations 9 and 10 are inde-
pendent of d, both d and n may be increased without increas-
ing the redistribution time.  This behavior is better suited to 
large scalable systems than that of image partitions. Experi-
mental verification is shown in section 5 with tests run on 
the Touchstone Delta.

The above analysis holds for a constant screen size.  As data 
size increases it may be necessary to increase the screen size 
to prevent undersampling.  Adopting the convention that  
p1/2 = 2d1/3 causes the local image size at each node to be-
come a function of the data size (4 d2/3 n−2/3) making the total 
redistribution size 

mredist ≅ 4 d2/3 n1/3 (11)

Substituting equation 11 into the expressions for redistribu-
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plemented on the Touchstone Delta.  The algorithm uses a 
block data distribution.  Local images of test data are ren-
dered by ray casting to provide perspective views (Fig. 15).  
The performance of this implementation is tabulated in fig-
ure 16 as the frame rates achieved for various data and 
system sizes.  In all cases the screen size is 2562 pixels.  The 
data is analytically generated from Gaussian point and line 
sources sampled at different densities.  The reader is referred 
to [Neum93] for further details about the isosurface shading 
and load balancing used in this implementation.  

The Delta provides access to a frame buffer through an I/O 
node that feeds a HIPPI channel.  Although the renderer as-
sembles a complete 2562 image in one node, it is not sent to 
the HIPPI frame buffer I/O node during these tests since up-
dating the frame buffer limits the frame rate to about four 
Hertz for this image size.

6.1.  Scaling
Performance scaling for this and other object partition 

implementations [Ma93] is lower than one might expect 
when nodes are added for a constant data size.  This is par-
tially due to the loss of rendering efficiency obtained from 
adaptive ray termination.  Note the slower frame rate of the 
43 system relative to the 33 system size and the low sensi-
tivity to data size.  At each node the implementation uses 
adaptive sampling, adaptive ray termination, and an octree 
encoding of the minimum and maximum data value in each 
octant.  The effectiveness of the speedups vary for different 

ping is simply done by enumerating the partition blocks in x, 
y, z-order and assigning them to the corresponding partition 
node number.  For example, a  2×2×2 block partition fits into 
a 3×3 mesh with blocks 〈0,0,0〉, 〈0,0,1〉, … , 〈1,1,1〉 assigned 
to nodes 0, 1, 2, …, 7, respectively.  In this example case, the 
last node (node 8) is unused and doesn’t contribute to the 
test.

Figure 13 shows the growth of redistribution size as the 
number of nodes increases for three fixed image sizes.  Fig-
ure 14 shows the measured redistribution time shrinking 
over the same increase in the number of nodes. These two 
figures agree with the predicted behavior for object parti-
tions and mesh networks — as n increases the redistribution 
size also increases, but the redistribution time decreases.

6.  Volume Rendering on Touchstone Delta
An object partition volume rendering algorithm was im-
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Data size System 23 33 43 53 63

643 1.8 2.9 2.7 5.0

1283 1.6 2.6 2.5 4.2 5.1

1923 2.3 4.1 4.9

Fig. 16 - Touchstone Delta rendering performance
(frames per second)

Fig. 15 - Isosurface rendering of test data 
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factor so memory is efficiently used, and a low bandwidth 
(low cost) mesh network is sufficient for either approach.  
The image partition supports rendering efficiencies but the 
caching adds complexity to the nodes.  An object partition  
is less efficient at rendering, but its lower complexity and 
redistribution costs are better suited to systems with small-
er, more numerous processors. 
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data block sizes and numbers.  Adaptive sampling is done 
by the isosceles-triangle recursive subdivision method 
[Shu91]. Nodes construct a separate octree for their data 
block.  The octree "fit" of the features in the data varies 
with block dimension and placement. Adaptive ray termi-
nation only effects local image rendering, so as the depth 
complexity of the partition goes up and the data blocks get 
smaller its effectiveness diminishes.  Although adaptive 
ray termination becomes less efficient as the number of 
blocks (and nodes) increases, its low overhead makes it 
worthwhile in all the cases tested.

Much better scaling is observed for the underlined cases 
(Fig. 16) where the data and system sizes are varied 
proportionally.  In these cases each node is assigned a 323 
data block and the system speed increases by more than a 
factor of two.  This is at least partially due to the shrinking 
size of the local images as nodes are added.

The implementation illustrate a case where an object par-
tition algorithm succeeds in reducing the redistribution 
costs to an insignificant level.  A 63 system computes a 
2562 image in about 200 ms. The measured redistribution 
time in that case is under 10 ms. consuming under five per-
cent of the total frame time.

7.  Summary and Discussion 
Parallel volume rendering algorithms inherently re-

quire communication of data.  Parallel algorithms may be 
grouped into three classes each characterized by unique 
redistribution costs. Redistribution sizes for three classes 
of parallel algorithms are derived from analysis and 
simulations.  A network model is used to estimate the time 
required for redistribution on mesh networks. The perfor-
mance of object partition algorithms is verified by tests on 
the Touchstone Delta.

Further rendering speedups and hardware accelerators are 
clearly important areas of future research.  A large portion 
of rendering time is consumed to reconstruct and resample 
the volume.  Dedicated 3D texture hardware accelerates 
this process in new graphics systems.  These systems pro-
vide high performance volume rendering through image 
partition parallelism, but  the scalability of these systems 
for larger data and even higher performance is in question 
since current designs completely replicate the data at each 
processing node (r = n) to eliminate redistribution costs.  
This research raises the question of whether a more cost 
effective approach can be used to build general purpose or 
dedicated hardware capable of scaling to very large data 
sizes and high performance levels.  In my opinion the an-
swer is likely to lie to a highly parallel system with  hun-
dreds or perhaps thousands of simple processors. Based on 
their low redistribution costs, two algorithms seem likely 
contenders for such systems: image partitions with static 
data and large caches, or object partitions with block data 
distributions.  Neither approach requires a high replication 
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