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Abstract

Wearable computers afford a degree of mobility that makes tracking for augmented

reality difficult.  This paper presents a novel object-centric tracking architecture for

presenting augmented reality media in spatial relationships to objects, regardless of the

objects’ positions or motions in the world.  The advance this system provides is the

ability to sense and integrate new features into its tracking database, thereby extending

the tracking region automatically.  A lazy evaluation of the structure from motion

problem uses images obtained from a single calibrated moving camera and applies

recursive filtering to identify and estimate the 3D positions of new features.  We evaluate

the performance of two filters; a classic Extended Kalman Filter (EKF) and a filter based

on a Recursive-Average of Covariances (RAC).  Implementation issues and results are

discussed in conclusion.

1.  Motivation and Introduction

Wearable computers offer a compelling target for augmented reality (AR) interface

metaphors.  The promise of wearables is to endow users with essentially limitless

mobility and range.  Users, moving about and interacting with the real world, receive data



and communication through wearables.  The AR metaphor of overlaying information in

spatial relationships to real objects support such interactions without the ambiguity that

may arise from text or diagrams displayed in fixed screen positions.  Figure 1 illustrates

how spatially aligned AR overlays can concisely communicate information and tasks.

Maintaining the spatial alignment between virtual annotation and real objects as users

move requires dynamic tracking of the viewpoint relative to objects.

Fig. 1  Example of AR annotation supporting a

maintenance task

Tracking has been at the heart of research and development in augmented reality (AR)

since it’s inception in the 1960’s [SUTH68].  Many systems have been developed to track

the six-degree of freedom (6DOF) pose of an object (or a person) relative to a fixed

coordinate-frame in the environment [FOXL96, GHAZ95, KIM97, MEYE92, SOWI93,

STAT96, WARD92, WELC97].  These tracking systems employ a variety of sensing

technologies, each with unique strengths and weaknesses, to determine a world-centric

pose measurement, as required for virtual and augmented reality applications.  Tracking

for AR in a fixed frame of reference, however, implies that objects in the environment are

calibrated to the tracker’s frame of reference and that, after calibration they remain fixed.



This assumption is valid for applications such as architectural visualization [KLIN97,

FEIN95] where the walls and floors form a rigid structure whose world coordinates can

be calibrated, or are already known by design, and are not likely to move.  World-centric

trackers can be used to calibrate movable objects [FEIN93, STAR97, WELL93,

BAJU92], but this generally entails placing and calibrating tracking system elements on

each object of interest and operating within range of the shared tracking infrastructure,

(e.g., magnetic fields or active beacons) [KIM97, WELC97].  These requirements make it

difficult and expensive to accommodate moving objects with current world-centric

tracking approaches.

A large class of AR applications require annotation on objects whose positions in a room

or the world may vary freely without impact on the AR media linked to them.  For

example, AR applications in manufacturing, maintenance, and training [KLIN97,

CAUD92, FEIN93] require virtual annotations that provide task guidance and specific

component indications on subassemblies or portions of structure (Fig.1).  These

applications are particularly suited to wearable computers because of the mobility

afforded to the user.  A more appropriate tracking solution for these highly mobile

applications is one that is object-centric, or in other words, based on viewing the object

itself [NATO95, NEUM96, REKI97, SHAR97, UENO95, STAR97, KUTU96,

MELL95].  Such tracking is possible with the pose estimation methods developed in the

fields of computer vision and photogrammetry [HUAN94, FISC81].  However, a

weakness of vision-based tracking is that pose is only computed for those views that

contain known features of the scene.  Given the mobility of wearable computer users, and

the range of tasks they may need to perform, it is necessary to increase the robustness of



pose tracking.  Our tracking method can dynamically expand the range and robustness of

tracked AR camera views as the system is operating.

1.1.  Issues in Vision-Based Tracking

Vision-based tracking is the problem of calibrating a camera’s pose relative to an object,

given one or more images.  Vision-based tracking methods can be roughly grouped into

the three following categories, based on their requirements:

♦ Three or more known 3D points from a single image [FISC81, GANA84, HORA89,

KLIN97, KUTU96, MELL95, SHAR97, NEUM96, WARD92]

♦ A sequence of images from a moving camera where point positions may be known or

unknown [AZAR95, BROI90, SOAT94, WELC97, UENO95]

♦ Model and template matching from a single image [LU96 , NATO95]

The first class of approaches uses a calibrated camera to provide constraints to the pose

formulation, so only a few known points within a single image are needed for tracking.

This class of methods has been successfully employed in AR tracking systems, and it is

used in our system as well.

The points needed for tracking can be object features such as corners and holes, or they

can be intentionally designed and applied targets or fiducials.  We selected the latter

option in our work since naturally-occurring features can be difficult to recognize due to

their variety and unpredictable characteristics.  Also, objects do not always have features

where they are needed for tracking;  large regions of surfaces are often indistinguishable

when viewed without context.  Fiducials have the advantage that they can be designed to

maximize the AR system’s ability to detect and distinguish between them, they can be

inexpensive, and they can be placed arbitrarily on objects.  The design and detection of



fiducials are important topics, but in this work, we assume only that fiducials have some

basic characteristics such as color and shape.

Our goal is to increase the range of camera-motion that provides tracked viewing while

minimizing the number of fiducials that must be applied to an object.  A worst-case

occurs when all regions of a large object are equally likely to be viewed and therefore a

dense distribution of fiducials is needed to support tracking over the entire object.

Covering large objects (e.g., airplanes, machinery) with fiducials is impractical and

calibrating them is difficult.  Our approach is an alternative analogous to “lazy-

evaluation” in algorithm design;  fiducials are only placed, and their positions computed,

as the need for them arises.  An initial set of fiducials is strategically placed and

calibrated on an object or a fixture rigidly connected to an object.  As regions of the

object require additional fiducials to support tracking, users simply add new fiducials to

those regions of interest and allow the system to automatically calibrate them.  Once

calibrated, the new fiducials are added to the database of known fiducials that are used

for tracking.  In addition to extending the range of tracked poses, the additional fiducials

stabilize the pose calculation since more fiducials are likely to be visible in images.

This approach is most practical when a limited region of the object needs to be viewed

and tracked for a given task, but that region and task is just one of many that may occur.

Assembly, training, and maintenance tasks often have this quality.  Information for a

given task is local, but the specific task and locality is only one of many that may be

performed by different people at different times.  Figure 1 illustrates AR annotation for a

maintenance task that requires tracking in only a limited region around an access panel in

a larger structure.



The remainder of this paper presents our vision-based AR tracking architecture.  Details

are given on the recursive filters that calibrate the 3D positions of new fiducials.  We

compare the results from two filters and two operational examples.

2.  System Architecture

Figure 2 depicts our architecture.  A single camera provides real time video input, and a

user observes the camera image and AR media overlay on a display that may be desktop,

handheld, or head-mounted.  Sections 2.1 - 2.3 describe the components of this

architecture that set the context for section 3 where the unique new point evaluation is

described.
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2.1.  Segmentation and Feature Detection

The important aspect of this step is that fiducials must be robustly detected and located.

They are defined by a 2D screen position p and a type q that encodes characteristics such

as color and shape.  Our fiducial design is a colored circle or triangle [NEUM96], but

other designs such as concentric circles or coded squares are equally valid [STAT96,

EAGL, KLIN97, MELL95].  We use the three primary and three secondary colors along

with the triangle and circle shapes to provide twelve unique fiducial types.  Fiducials are

detected by segmenting the image into regions of similar intensity and color and testing

the regions for the color and geometric properties of fiducials.  Detection strategies are

often dependent on the characteristics of the fiducials [REKI97, TREM97, UENO95].

2.2.  2D Correspondence

The 2D fiducials (p,q) must be corresponded to elements in a database of known 3D

fiducial positions and types(R,q). The result of a successful match is a corresponded

fiducial whose 2D screen position and 3D coordinate on the object are now known

(R,p,q).  Fiducials observed in the image, but not corresponded to the world database, are

passed on as uncorresponded fiducials and potential new points to estimate.

Computing correspondences is hard in the general case [MELL95, UENO95], and trivial

if the fiducial types are unique for each element in the database.  For this work, we

consider only unique feature types that are trivial to correspond since our focus is on the

extendible tracking portion of the architecture, however, we recognize that

correspondence is a necessary function for the architecture to scale to truly useful levels.



Other researchers have proposed solutions of varying applicability to our case, and we

intend to leverage from their work in the future [SHAR97, MELL95].

2.3.  Camera Pose

Three or more corresponded fiducials allows the camera pose to be determined [FISC81].

The approach we use has known instabilities in certain poses, and in general provides

multiple solutions (two or four) from a fourth-degree polynomial.  Methods have been

proposed to select the most likely solution [SHAR97].  We weight several tests to rank

the possible pose solutions in terms of their apparent correctness.

♦ The distance between the current and last frame’s viewpoint is inversely proportional

to a solution’s weight.

♦ The fiducials’ relative pixel-areas are tested for agreement with the expected

relationships based on each pose solution.

♦ When more than three known fiducials are available, their projections under the

candidate poses are compared to their measured positions.

♦ When more than three known fiducials are available multiple pose calculations are

performed for different sets of three fiducials, and the closest pairs from each

calculation are highly ranked.

The result of this function is an array of poses K, ranked by the above tests, which are

passed on to the new point functions (shown over gray in Fig. 2).

3.  New Point Evaluation

This section details the unique aspects of this architecture that provide the interactive

extension of the tracked viewing range.  Given the camera pose and image coordinates of



the uncorresponded features, these features’ position estimates are updated in one or two

possible ways, as detailed in the next section.

3.1.  Algorithms

3.1.1.  Initial Estimates

For uncorresponded fiducials (p, q), the intersection1 of two lines connecting the camera

positions and the fiducial locations in the image create the initial estimate of the 3D

position of the fiducial.  The intersection threshold is scaled to the expected size of the

fiducials.  For example, if the radius of the fiducials is 0.5 inch, as in our case, the

threshold is 1.0 inch.  Our selection is based on the minimum distance that two distinct

fiducials can be placed without overlap.  Lines with a closest point of approach less than

1.0 inch are considered to be intersecting.

3.1.2.  Extended Kalman Filter (EKF)

The Extended Kalman Filter (EKF) has been used in many applications, and details of the

method can be found in references such as [MEND95, WELC97, BROI90].

Inputs to the EKF are the current camera pose and the image coordinates of the fiducial.

kc : camera pose at kth time step

kz : image coordinates of the fiducial at kth time step

The state of the EKF is the current estimate of the fiducial’s 3D position.  The real 3D

position of the fiducial is constant over time, so no dynamics are involved in the KEF

                                                

1 Since two lines in 3D space may not actually intersect, the point midway between the

points of closest approach is used as the intersection.



equations.  Parameters of the EKF, including the current state and its covariance matrix,

are explained below.

cp : intrinsic camera parameters including focal length

1−kx : real value of 3D fiducial position. 121 ...... xxxx kkk ==== −−

1ˆ −kx  (state): filter’s estimate of the state value at (k-1)th time step  (Initial state is the

intersection of the first two lines)

Given )...( 1211 −− = kk zzzZ , )...( 1211 −− = kk cccC , and cp

),,|(ˆ 1111 ckkkk pCZxEx −−−− = (3.1)

−
kx̂  (state prediction): predicted state estimate at kth time step given measurement up to

(k-1)th time step

Given  )...( 1211 −− = kk zzzZ , )...( 1211 −− = kk cccC ,  and cp

),,|(ˆ 11 ckkkk pCZxEx −−
− = (3.2)

kz  (measurement): image coordinate of the fiducial at kth time step

kẑ  (measurement estimate): estimated measurement at kth time step (See eq. 3.6)

kz~  (residual): kkk zzz ˆ~ −=  (3.3)

Q  (process noise): set to be a very small value for numerical stability.  For example, let

3U  be 3x3 identity matrix, then 3
510 UQ ?= −

R  (measurement noise): 2x2 covariance matrix



Let 2U  be 2x2 identity matrix, then 22 UR ?= , assuming that the measurement error

variance is 2, and there is no correlation between x and y coordinates in the image space.

1−kP  (state uncertainty): 3x3 uncertainty covariance matrix at (k-1)th time step

])ˆ)(ˆ[( 11111
T

kkkkk xxxxEP −−−−− −−= (3.4)

−
kP  (state uncertainty prediction): predicted state uncertainty at kth time step given

measurement up to (k-1)th time step

])ˆ)(ˆ[( T
kkkkk xxxxEP −−− −−= (3.5)

h
r

 (measurement function): function returning the projection(measurement estimate) of

the current position estimate given the current camera pose and camera parameters

),,ˆ(ˆ ckkk pcxhz −=
r

(3.6)

kH  (Jacobian): Jacobian matrix of h
r

kK  (Kalman Gain): 3x2 matrix.  See equation (3.9)

The EKF process is composed of two groups of equations: predictor(time update) and

corrector(measurement update).  The predictor updates the previous ((k-1) th) state and its

uncertainty to the predicted values at the current (kth) time step.  Since the 3D fiducial

position does not change with time, the predicted position at the current time step is the

same as the position of the previous time step.
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Corrector equations correct the predicted state value −
kx̂  based on the

residual of actual measurement kz and measurement estimate kẑ .  The Jacobian

matrix linearizes the non-linear measurement function.

3.1.3.  Recursive Average of Covariances (RAC) Filter

The RAC filter models each measurement as a 3D line through the current camera

position and the fiducial location in the image.  The 3D position estimate (X) of the

fiducial is updated based on the measurement line (l).  The uncertainty covariance matrix

of the estimate is used in computing the update direction vector and the update magnitude

of the estimate, and then recursively averaged with the uncertainty covariance matrix of

the line.

To obtain the update direction of the position estimate, a vector v
r

 from the current

estimate (X) to a point on the line (l) that is closest to X is computed first.  The update

direction vector q
r is a version of the vector v

r
 scaled by the uncertainty of X, to move

the estimate in the direction of larger uncertainty.  Figure 3 shows the 2D analogy of
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update direction computation.  v
r

is scaled in directions of 1εr and 2εr by 1λ and

2λ respectively to produce q
r

.

1εr

2ε
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v
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Fig. 3  2D analogy of new algorithm of

update direction in RAC

The update direction vector q
r

is computed by following the processes described below.

First we find parameters (a,b,c) satisfying vcba
rrrr =?+?+? 321 εεε  to represent the vector

from the current estimate to the closest point on the new line in the uncertainty eigen-

vector coordinate system.

Then we compute (a’, b’, c’) by scaling (a,b,c) by )( 321 λλλ
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Finally, the update direction q
r

 is obtained using the scaled components (a’, b’, c’).

The update magnitude m of the position estimate is

m = min(du, dl)

where du   is the uncertainty of the current estimate in the direction of q
r

and dl  is the

scaled distance from X to l in the direction of q
r

,i.e., q
r

.

The uncertainty of the position estimate is represented by a 3x3 covariance matrix.  Each

line has a constant uncertainty kL , which is narrow and long along the direction of the

line.  Uncertainty is updated by recursively averaging the covariance matrices, similar to

the process used in the Kalman Filter.  In the Kalman Filter, the uncertainty covariance

matrix is updated by performing weighted-averaging with 2D-measurement error

covariance as below.

In the RAC filter, the measurement is modeled as a line that is already in the same 3D

space the estimate is in.  Therefore we can eliminate the Jacobian matrix and its

linearization approximation.  This is an advantage of the RAC filter over the EKF,

simplifying and reducing the computational overhead.  Let −
kP be the uncertainty
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covariance matrix of the current estimate and kL be that of the new line, then

computation of the updated uncertainty covariance matrix kP is simplified as below.

The initial value of kP is obtained in the same way by replacing −
kP  with kL ,

resulting from the two initial line uncertainties.

3.2.  Experiment and Result

Both filters appear stable in practice. The EKF is known to have good characteristics

under certain conditions [BROI90], however the RAC gives comparable results, and it is

simpler, operating completely in 3D world space with 3D lines as measurements.  The

RAC approach eliminates the linearization processes required in the EKF with Jacobian

matrices.

We tested the EKF and RAC filters to find the positions of two new fiducials (refered to

as red and magenta fiducials).  We started with three known fiducials and two cases were

tested.  In the panning case, new fiducials were placed to the side of the known fiducials,

assuming a translated region of interest. In the zooming case, new fiducials were placed

in the center so that the user could zoom in to a region of interest.
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Synthetic data sets were created, based on real camera poses captured by real camera

movements.  White noise of maximum 0.5 and 2.0 pixel-error were added to the

measurements of the image coordinates of the fiducials.  See figures 4 and 5 for the

results of experiments with synthetic data sets.
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Fig. 4  Synthetic Data: Camera movement - Zooming
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Experiments with real data were performed in both the zoom and pan cases (figure 7).

The estimates of the filters were compared with analytic solutions, which have the

minimum sum of Euclidean distances to the input lines.  Figure 6 shows a 2D analogy of

the analytic solution computation.
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Fig. 6   2D Analogy of Analytic Solution:

The analytic solution is a point that has minimum sum

of distances to the lines.  In this case, the analytic

solution is a point X that minimizes d1+ d2+ d3+ d4.
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Fig. 7  Real Data: Zooming and Panning cases



A virtual camera view shows the results of the real data experiments graphically (figure

8).  The lines are traces of the camera, i.e., the input lines used for RAC filter.  The large

spheres indicate positions of known fiducials, which were used for computing camera

poses.  The dark and bright small spheres represent the estimated positions produced by

the RAC and EKF filters, while the black cube represents the analytic solution positions.

Pan Case: Magenta fiducial

The EKF result (bright sphere) appears in

front of the analytic solution (black cube),

and the RAC filter result (dark sphere) is

just to their left.

Zoom Case: Red fiducial

The EKF result (bright sphere), RAC filter

result (dark sphere), and the analytic solution

(black cube) overlap and are not separately

discernible.

Fig. 8 Virtual camera views of the results of real data experiments.

The results show that the estimates of the filters converge fast and remain stable after

convergence with both real and synthetic data.



Our hardware configuration included a desktop workstation, however this system is

similar in computing power to currently available portable laptops or wearables.

♦ SGI Indy 24-bit graphics system with MIPS4400@200MHz.

♦ SONY DXC-151A color video camera with 640x480 resolution, 31.4 degree

horizontal and 24.3 degree vertical field of view (FOV), S-video output.

Our future work entails a solution to the 2D correspondence problem.  This is necessary

for the system to scale to greater numbers of fiducials.  We also hope to improve our

ability to select the correct pose solution, and we will have to address the error

propagation from multiple chained fiducial estimates.
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