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Abstract 
Vision-based tracking systems have advantages for 
augmented reality (AR) applications. Their registration 
can be very accurate, and there is no delay between the 
motions of real and virtual scene elements.  However, 
vision-based tracking often suffers from limited range, 
intermittent errors, and dropouts.  These shortcomings 
are due to the need to see multiple calibrated features or 
fiducials in each frame.  To address these shortcomings, 
features in the scene can be dynamically calibrated and 
pose calculations can be made robust to noise and 
numerical instability.  In this paper, we survey classic 
vision-based pose computations and present two 
methods that offer increased robustness and accuracy in 
the context of real-time AR tracking. 
 
1. Introduction 

Vision-based tracking systems have advantages for 
video see-through augmented reality (AR).  First, the 
same video camera used to capture real scenes also 
serves as a tracking device.  Second, the pose calculation 
is most accurate in the image plane, thereby minimizing 
the perceived image alignment error.  Additionally, 
processing delays in the video and graphics subsystems 
can be matched, thereby eliminating dynamic alignment 
errors.  Tracking in vision-based systems is often 
relative to objects of interest, allowing these to move in 
the environment [NEUM96]. 

The operating range of vision-based tracking systems 
is limited to areas where a minimum number of 
calibrated features (landmarks or fiducials) are in view.  
Partial occlusion of these features, even when the area of 
users' interest is in view, may cause failure or errors in 
tracking.  More robust and dynamically extendible 
tracking can be achieved by dynamically calibrating the 
3D positions of uncalibrated fiducials or natural features 
[PARK98], however the effectiveness of this approach 
depends on the behavior of the pose calculations.  
Experiments show that tracking errors propagate rapidly 
for extendible tracking when the pose calculation is 
sensitive to noise or otherwise unstable.  Fig.1 shows 
how errors in camera position increase as dynamic pose 
and calibration errors propagate to new scene features.  

In this simulated experiment, the system started tracking 
with 6 calibrated features.  The camera was then panned 
and rotated while the system estimated the positions of 
94 initially uncalibrated features placed in a 
100”x30”x20” volume.  Fig. 1a shows the average errors 
of the dynamically estimated features.  Fig. 1b shows the 
errors in the camera position computed from the 
estimated features.  After about 500 frames (~16 
seconds) the five inch accumulated error exceeds 5% of 
the largest operating volume dimension.  This 
performance may be adequate to compensate for several 
frames of fiducial occlusion, but it does not allow 
significant tracking area extension.   

 

 
A major source of errors in the above experiment is 

the pose calculation method.  We used a popular 3-point 
analytical method [FISH81].  Fig. 2b plots the camera 
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a. Feature 3D position calibration error 

Error propagation in camera position
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b. Errors in camera position 

Fig.1 Propagated errors in dynamic tracking range 
extension experiment 



position error produced by this method under simulated 
test conditions.  We project calibrated points to the 
image plane and add Gaussian measurement noise 
(�=0.5 pixels).  The true camera position is placed at 
grid points on a plane with the look-at point maintained 
around the center of the triangle that is formed by the 3D 
point positions (Fig. 2a).  The X and Y (horizontal 
plane) coordinates of the dots in Fig. 2b indicate the X 
and Y coordinates of the tested true camera positions.  
The vertical coordinate indicates the computed camera 
position error.  The errors are well behaved (~0) in most 
cases.  But this method has a known numerically 
unstable area (curved triangular hole in Fig. 2b) and also 
produces multiple solutions.  (In our test, multiple 
solutions were ignored by selecting the closest solution 
to the true pose.)  More accurate pose estimates are 
needed to reduce the error growth rate in extendible 
tracking. 
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a - Experiment sequence 

(1) true camera position is iterated on the grid points 
(2) for a given true camera position:  

Image coordinates of fiducials are computed, adding 0.5 pixel 
Gaussian noise, then based on the fiducial 3D positions and 
corresponding image coordinates, camera pose is computed. 

 
b – Computed camera position error 

Fig. 2 Accuracy test of 3-point pose method 
 
Our criteria for pose calculation methods suited to 

dynamically extendible AR tracking are as follows: 

�� Real-time pose computation (<20 ms/estimate) 
�� Accurate solutions when given accurate data, yet  

robust solutions in the presence of measurement 
and calibration errors.  The method should also 
facilitate outlier culling in the presence of gross 
errors (e.g., incorrectly identified features). 

�� Adaptive use of available information in a frame.  
When more information (features) are available 
in a frame, the method should use them to 
increase accuracy.  When little information is 
visible, it should make the best estimate and 
reduce its confidence in the solution.   

Methods that use all available information (N-point 
methods) are generally robust because errors and noise 
can be averaged out [DEME95].  In terms of the 
minimum number of features required for tracking, the 
lower, the better, but three or four visible features per 
frame are consistent with theoretical minimums. 

 
2. Background 

In this section, vision-based pose calculation 
methods are surveyed in light of our above criteria for 
application to extendible AR tracking. 

Our test method is based on three calibrated point 
correspondences.  Methods have been proposed to select 
the most likely solution among the multiple solutions 
[SHAR97].  We weighted several heuristics to rank the 
possible pose solutions [NEUM98], however, it is still 
unstable over a significant area and the heuristics fail in 
some situations (Fig. 2b).  Fishler and Bolles suggested 
“Random Sample Consensus” as a method of smoothing 
data containing a significant percentage of gross errors 
[FISH81].  They applied this method to the 3-point pose 
method with success in removing the effects of gross 
errors.  However, their method does not have a time 
limit (performing random trials), making it unsuitable 
for real time applications.   

Horaud et al. developed a four point pose method 
using non-coplanar points.  Geometric constraints are 
used to solve biquadratic polynomial equations with one 
unknown [HORA89].  They assert that their method is 
real-time, providing fewer solutions than 3-point-based 
methods, and is more stable (not dependent on the 
relative orientation of the image plane and scene plane).  
The problem of multiple solutions persists and near 
coplanar points and noise produce unstable results.   

Ganapathy computes camera position and orientation 
using a non-iterative analytical method [GANA84].  His 
method also employs only 3 points (for external camera 
parameter estimation), and in general, there are multiple 
solutions.  Although it can be extended to using n-points, 
it requires iterative optimization.   

Uenohara et al. used a recursive method (Newton’s 
method: multiple DSP chip implementation) for 6DOF 



pose estimation and coplanar invariants for direct 
computation of 2D-image overlay [UENO96].  This is 
not suited for more general software-based 3D 
annotation. 

There are many methods for recovering pose by 
iteratation (Newton-Raphson) [LOWE91] [YUAN89].  
However, these require initial approximations and can 
be computationally expensive [DEME95].  Also the 
solutions can converge to local minima if the initial 
values are not close to the true solution [OLIE97].  
Dementhon et al. designed an iterative algorithm that 
does not require initial estimates and performs in real-
time [DEME95].  However, their method uses scaled 
orthographic projections and did not fully used the fact 
that rotation matrices are orthonormal.   

Researchers also used curves or surfaces for pose 
estimation [FELD97][KRIE90], which are not relevant 
to our problem.  Recently, researchers from LORIA 
combined 3D features and 2D correspondences to 
compute accurate camera pose changes [SIMO98].  
Because the relationship between corresponding points 
is a function of camera motion, the camera pose 
accuracy can be improved using a cost function that 
counts the re-projection error and matching error.  This 
work also uses a robust M-estimator for managing false 
matches.  Although this method is robust and accurate, it 
is not real-time (about 25 seconds per frame) and it only 
stabilizes camera motion, not absolute pose. 

 In the field of Structure from Motion, researchers 
seek to recover camera motion and the model parameters 
simultaneously.  For example, Azarbayejani et al. 
demonstrates a recursive algorithm to estimate object 
structure, camera motion, and camera focal length 
[AZAR95].  A minimum of 7 points is required, but in 
practice more points are needed for smoothing.  The 
method is also sensitive to noise.  Other methods that 
use the essential or fundamental matrix [HART95] rely 
on polynomial manipulations, which are also unstable 
[OLIE97]. 

Welch et al. designed a pose filter or estimator that 
accepts one point measurement (or constraint) at a time 
[WELC97].  The computational overhead of this method 
(called SCAAT) is small, facilitating real-time 
applications, and it exhibits robust behavior with noise.  
SCATT was developed for a high update rate (>1KHz) 
active beacon system that measured one point at a time.  
We also use the idea of processing one point at a time, 
however given that video images are snapshots 
containing multiple point measurements taken at the 
same time, but at a much lower rate (30Hz), we develop 
our filter specifically for video-based tracking. 

Azuma et al. used gyros and accelerometers with 
active beacon tracking [AZUM94].  A Kalman filter 
predicts the user’s head motion.  Our second pose 

calculation method also uses a Kalman Filter to smooth 
its pose estimates. 

 
3. New Methods 

This section presents our two approaches to vision-
based pose computation.  One method is based on robust 
averages of 3-point solutions.  The other is based on an 
iterative Extended Kalman Filter (iEKF), and SCAAT 
(Single Constraint At A Time) filter [WELC97].  Our 
methods are designed specifically for video frame rates 
and over-constrained measurements per frame that are 
typical of passive vision systems. 
 
3.1. Robust Averages of 3-Point Solutions (RA3) 

To address the multiple solution problems and 
instabilities of the simple 3-point pose method (shown in 
Fig. 2), we take robust averages of 3-point solutions.  
First, the features whose 3D position uncertainties are 
below a threshold are selected.  (Note that these features 
may have been calibrated off-line or dynamically on-
line.)  Second, the feature positions in the image are 
analyzed to select a set of evenly distributed features.  
Four features closest to the corners of the image, and 
two features closest to the center of the left and right 
halves of the image, are selected.  A maximum of twenty 
triples from these six points is robust-averaged with 
outlier culling.   

As can be seen from Fig. 2, there are pose outliers 
due to numerical instability.  For robust least-square 
solutions, the M-estimator has been suggested 
[HUBE81] [SIMO98].  We used a real-time 
approximation of Huber’s M-estimator.  Details are 
found in Appendix A. 

After the robust M-estimator is computed, a linear 
Kalman filter applies temporal smoothing.  In our case, 
the measurement and the Kalman filter state have the 
same dimension, and the measurement equation and 
process equation are linear (Fig. 3).  Currently, a simple 
dynamic equation with 0 acceleration is to effect 
smoothness. 

This pose solution makes use of both spatial (by 
feature distribution) and temporal (by smoothing using a 
linear Kalman filter) information. 
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Fig.  3 Linear Kalman Filter for temporal smoothing 
 
Fig. 4 Shows how the pose solutions is improved by 

averaging, robust M-estimation, and Kalman filtering.  
Gaussian noise (� = 0.5-pixel) was added to the 
measurement of simulation data.  The 3-point method is 
greatly enhanced by averaging (Fig. 4a).  The M-
estimator removes the effects of incorrect 
correspondences and performs outlier (e.g., gross error) 
culling.  Even with correct data and no outliers, the 
result was improved in many frames (Fig. 4b) showing  
reduced sensitivity to noise.  Lastly, the linear Kalman 
filtering smoothed the camera pose enhancing the 
camera position accuracy (Fig. 4c).  In this and many 
other pose calculation methods, camera orientation is 
calculated based on camera position and feature 
correspondences, so the orientation accuracy depends on 
the position accuracy.  Thus, we did not present the 
charts for orientations.  The improvements are 
summarized in Table 1. with averages and standard 
deviations of errors.  These error statistics clearly show 
the benefits of averaging, applying robust M-estimator, 
and Kalman filtering. 
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Improvement by M-estimator
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Improvement by using Linear Kalman Filter
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Fig. 4 Improvement by averaging (a - top), robust M-
estimation (b - middle), and temporal smoothing with 
Kalman filtering (c - bottom). 

 
 3-point Avg. M-est. w/ KF 

Mean 0.350313 0.169502 0.15565 0.150282 

� 0.379892 0.09245 0.091413 0.0753 

Table 1. Improvement in averages and standard 
deviation in errors 
 
3.2. Iterative Extended Kalman filter (iEKF) 

This method iterates an Extended Kalman Filter 
(EKF) using all the usable point measurements available 
in a frame.  We call this method iterative EKF (iEKF) to 
differentiate from Iterated Extended Kalman Filter 
(IEKF) which iterates in Taylor series expansion.  As 
mentioned previously, this method is a variation of 
SCAAT, which was designed for sensory devices that 
read incomplete information sequentially and 



measurement systems that fuse the incomplete 
information to update the state.  A SCAAT filter uses the 
incomplete information in order to partially update the 
state in under-constrained cases without incorrect 
simultaneity assumption.  However, measurements in 
passive vision systems are often over-determined 
providing enough information simultaneously to 
completely update the state.  SCAAT was successful for 
tracking systems of high frequencies (e.g., UNC’s Hiball 
tracker: >1KHz), and its performance on tracking 
systems of low frequencies (e.g., passive vision tracker: 
7-30Hz) is not well known.  The high frequency updates 
of the SCAAT filter may be compensated for by over-
determination of the vision-based tracker.   

Because of the low measurement rate of video 
tracking, it may be impossible to use only one 
measurement at each time step (frame) and obtain 
reasonable estimates.  We use many or all of the 
measurements available at each time step in a point by 
point iterative update of the state.  For each new frame 
time, we predict the camera state based on the prior filter 
state and a model. Suppose there are N 2D feature 
measurements observable for a frame.  We use these 
measurements to correct the prediction in an iterative 
way, using each measurement once.  After using all the 
measurements for a frame, we zero the orientation 
elements of the state vector and update the external 
orientation in the form of quaternion.   

We use six parameters (x, y, z, �, �, �) to represent 
the state of camera.  These six elements have their own 
motion curves we approximate as quadric curves.  Let 
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We can set the process noise matrix as follows 
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And iq  is a process noise constant that reflects the noise 

in motion.  Large values for iq  mean more uncertainty 
of prediction and the filter will correct the estimate over 
a relatively large search space.  On the other hand, small 
values for iq  mean less uncertainty of prediction and 
the filter will correct the estimate over a relatively small 
search space. 

For example, if we set iq  = 1, it means to search 
camera position over a range of about 0.5mm and 
camera orientation in the range of about 0.03 degree.  If 
we set iq  equal to 100, it means to search camera 
position in the range of about 5 mm and search camera 
orientation in the range of about 0.3 degree.  Fig. 5 is the 
RMS error in camera position when iq  = 1 and 100 
using 9 fiducials and 0.5 pixels measurement noise. 
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Fig. 5 RMS error of camera position with different 
static process noise 

 
From Fig. 5, we see that when the process noise is 

large the peak error is small, but we have more jitters.  
When the process noise constant is small the peak error 
is large but with less jitters.  We attempt to dynamically 
tune our process noise to reduce the error where 
possible.  When there is a large change in camera state 
there is often large image feature motion in consecutive 
frames.  If we measure large (above a threshold) feature 
motions between frames we use a large process noise.  
For small feature motions we use small process noise.  
Fig. 6 compares the results obtained by using the 
dynamic noise and small static noise.  Fig. 7 compares 
the dynamic process noise and large static noise.  We 
see that overall the error behavior is better for dynamic 
noise than for either of static cases. 
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Fig. 6 RMS error for camera position with small 
static noise and dynamic noise 
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Fig. 7 RMS error for camera position with large 
static noise and dynamic noise 
 
 
 
4. Experiments and Results 
 
4.1. Synthetic Experiments 

We performed synthetic data experiments to show 
that the proposed methods satisfy the pose computation 
method criteria of section 1. 

For synthetic camera motion generation, a 
mechanical digitizer was used to generate 6DOF pose 
sequences or keyframe interpolations of viewpoints and 
look-at points were used.  Gaussian noise of various 
standard deviations was added to the measurements. 

The average computation times (with 6-14 points in 
view) for RA3 and iEKF were 3.6ms and 15 ms, 
respectively.  Considering 30-70ms for image analysis 
and 25-40ms for virtual object rendering, computational 
overhead of both methods are small and the whole 
process runs at about 8-14Hz on a 450 MHz Pentium 
CPU. 

The accuracy was tested comparing the projections 
of 3D-points using true camera pose and estimated 
camera pose.  Two 3D-points were projected in 500 test 
frames.  Averages of projection errors are shown in 
Table 2 for two measurement noise levels. 

 
Unit: pixel RA3 iEKF 
� = 0.25  0.55 0.29 
� = 0.5  1.02 0.52 

Table 2. Pose feature projection accuracy 
 

4.1.1. Different Noise Levels 
Computed camera pose solutions are compared with 

true values.  Measurement noise levels were � = 0.25 
and � = 0.5 pixel.  The pose accuracy of iEKF was 
slightly better than RA3 as was its projected pixel error 
accuracy.  Fig. 8 shows the camera position and 
orientation errors. 
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a – Camera position error for two noise levels 

Comparison (Orientation): with different noise
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b – Camera orientation error for two noise levels 

Fig. 8 Camera position and orientation errors for 
two measurement noise levels. 
 
4.1.2. Processing Different Numbers of Points 

Processing different numbers of points affects the 
pose accuracy.  Fig.9a shows pose solutions using 3, 4, 
and 7 points.  Fig.9b is a zoomed segment of Fig. 9a for 
the segment between the 180th and 230th frame to better 
show how more points reduces pose errors. 

An interesting point is that useful iEKF tracking is 
possible using only 2 points for a limited number of 
frames (Fig. 9c).  This suggests that even if less than 3 
points are available on average in a video sequence, 
iEKF may still track the camera state with reasonable 



accuracy.  (More analysis and testing needs to confirm 
this.) 
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a – Using 3, 4, and 7 points 

With different number of points 
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b - Close view of (a) in 180th~230th frame 
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c – Tracking using 2 points: iEKF 

 
Fig. 9 Tracking with different number of points 
 

4.1.3. Managing Outliers 
Vision-based methods are subject to have outlier 

problems.  Fig. 10a is an example of a gross error 
resulted from incorrect fiducial identification  (the cross 
mark on a pencil sharpener in the center of the image 
indicates that the pencil sharpener was detected as a 
fiducial). 

Measurement outliers were added (in addition to 
�=0.5 pixel Gaussian noise) to test the robustness of the 
methods (one feature outlier in 42nd~50th frame and 

150th~162nd frame, two feature outliers in 343rd~344th 
frame; outlier displacements were 100~250 pixels). 

RA3 method implements an approximated robust M-
estimator (Appendix A.) and manages the outlier cases.  
Although it is difficult to implement robust statistical 
method directly to the iEKF method, the projection of 
the current feature can be compared with the 
measurement to reject outliers using a priori covariance 
[PRES93][BROI90].  As a result, both methods are 
robust in the presence of outliers (Fig. 10b). 

 

Incorrect fiducial
identification

 
a - An example of  incorrect fiducial identification 
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b – Both methods are not affected by outliers 

Fig. 10 With presence of outliers 
 

4.1.4. Sudden Camera Motion 
Sudden camera motion is generated to test the 

convergence stability of the methods.  Both methods are 
stable providing pose solutions close to the true values.  
Fig. 11 shows the camera X coordinates.  The pose 
solutions of the two methods are very close to the true 
pose even with sudden camera motion.  Results of other 
coordinates are similar. 
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Fig. 11 Stability under sudden camera motion: 
camera X coordinates 

 
4.1.5. Dynamic Calibration  

The new methods were tested with the dynamic 
calibration test of Fig. 1.  Tracking was started with 6 
calibrated features, and dynamic calibration of 94 
uncalibrated features was done in a 100”x30”x20” 
volume.  The propagated errors were significantly 
reduced for both methods compared to the simple 3-
point method.  These results indicate that it may be 
feasible to use autocalibration over a long term and large 
area with modest error propagation.  More tests and a 
real system are needed to verify or demonstrate the 
viability of extendible tracking for real applications. 
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Fig. 12 Propagated camera position error with 
dynamic calibration 
 
4.2. Real Data Experiment 

A sequence of images was captured and digitized off-
line to compare the two new methods.  The image 
contains 15 multi-ring fiducials [CHO99] and the virtual 
objects include a torso of Venus, a virtual window, and 
annotations (Fig. 13).  The re-projection errors between 
the measurement and projection of fiducials were 
computed (Fig. 14).  The errors were predominantly 
under 1.0 pixel with both methods.  Note that all the 
features are calibrated off line.  No autocalibration is 
done in this test. 

  

 
a – fiducial placement 

 
b - virtual object overlay 

Fig. 13 Real environment and virtual object overlay 
for experiment with real data 
 

Real Data: fiducial re-projection error
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Fig. 14 Re-projection errors in real data experiment 

 
 
5. Conclusion and Discussion 

 
We described the desirable criteria for vision-based 

pose computation methods for supporting dynamic 
tracking extension.  In summary these are real-time, 
robust, accurate, and n-point-based. 

RA3 is fast (about 4 times faster than iEKF); robust 
under sudden camera motion and in the presence of 
outliers; accurate with about 1.0 pixel re-projection error 
(�=0.5 pixel measurement noise); and capable of using a 
wide range of points (3-6 in our tests).  

iEKF is also fast enough for real time applications, 
though it is slower than RA3; robust under sudden 
motion and in the presence of outliers; accurate within 
about 0.52 pixel of re-projection error (�=0.5 pixel 
measurement noise); and fully n-point-based. 

iEKF also has no minimum-points requirement for a 
given frame.  It can estimate pose if only one point is 



available in a frame (SCAAT case). As with SCAAT, 
only one feature is processed at a time, making the pose 
computation and uncertainty management relatively 
simple.  

RA3 is fast and robust under noise measurements 
because of the robust M-estimator.  Applying averaging 
has also advantage when the result (pose) is applied to a 
Kalman filter for temporal smoothing because the 
averaged result is Gaussian by central limit theorem.  
However, the accuracy is lower than that of iEKF. 

The dynamic calibration experiment showed that both 
methods reduced the propagated error significantly, 
offering greater freedom of mobility and accuracy to the 
users of vision-based tracking systems. 

Mpeg video files of the real data experiment are 
available for comparisons in our web page 
(http://star.usc.edu/~junp/iwar99.html). 
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Appendix A.  Real-time approximation of 
Robust M-estimator 

 
Generally, robust M-estimators require searches to 

find the M-estimations, which is not appropriate for real-
time applications.  However, an approximation can be 
obtained utilizing a priori averages with less 
computation.   
If we apply the M-estimation technique using Huber’s 
function �(x), the minimization equation is as follows. 
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This equation is difficult to evaluate analytically 
requiring search because of the conditions p-pi>c etc.: 
Conditions depend on the unknown value of p.  
However, because pp � , we can approximate the 
condition using the average. 
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where ��� kc . 
Consequently, we can use pseudo measurement 
suggested by Huber.  To devise robust algorithm that 
can be easily patched into existing programs, Huber 
suggest pseudo-observation, for example, in least square 
fitting: 
Let  iŷ fitted value of yi’s 
 iii yyr ˆ��  

is Standard error of yi or rI 

Pseudo-observations y*
i is defined as 
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*  

Constant c regulates the amount of robustness: good 
choose is btw 1 and 2, e.g., c=1.5 
 
However, there needs a method to differentiate between 
gross errors (e.g., from multiple solutions) and 
contaminated outliers (e.g., from noise measurement).  
This can be achieved by throwing away measurements 
with io scr ��  where e.g., 4�oc . 

 

 


