
Vision-based Pose Computation:
Robust and Accurate Augmented Reality Tracking

Jun Park, Bolan Jiang, and Ulrich Neumann

Computer Science Department
University of Southern California
{junp|bjiang|uneumann}@usc.edu

Abstract
Vision-based tracking systems have advantages for
augmented reality (AR) applications. Their registration
can be very accurate, and there is no delay between the
motions of real and virtual scene elements. However,
vision-based tracking often suffers from limited range,
intermittent errors, and dropouts. These shortcomings
are due to the need to see multiple calibrated features or
fiducials in each frame. To address these shortcomings,
features in the scene can be dynamically calibrated and
pose calculations can be made robust to noise and
numerical instability. In this paper, we survey classic
vision-based pose computations and present two
methods that offer increased robustness and accuracy in
the context of real-time AR tracking.

1. Introduction

Vision-based tracking systems have advantages for
video see-through augmented reality (AR). First, the
same video camera used to capture real scenes also
serves as a tracking device. Second, the pose calculation
is most accurate in the image plane, thereby minimizing
the perceived image alignment error. Additionally,
processing delays in the video and graphics subsystems
can be matched, thereby eliminating dynamic alignment
errors. Tracking in vision-based systems is often
relative to objects of interest, allowing these to move in
the environment [NEUM96].

The operating range of vision-based tracking systems
is limited to areas where a minimum number of
calibrated features (landmarks or fiducials) are in view.
Partial occlusion of these features, even when the area of
users' interest is in view, may cause failure or errors in
tracking. More robust and dynamically extendible
tracking can be achieved by dynamically calibrating the
3D positions of uncalibrated fiducials or natural features
[PARK98], however the effectiveness of this approach
depends on the behavior of the pose calculations.
Experiments show that tracking errors propagate rapidly
for extendible tracking when the pose calculation is
sensitive to noise or otherwise unstable. Fig.1 shows
how errors in camera position increase as dynamic pose
and calibration errors propagate to new scene features.

In this simulated experiment, the system started tracking
with 6 calibrated features. The camera was then panned
and rotated while the system estimated the positions of
94 initially uncalibrated features placed in a
100”x30”x20” volume. Fig. 1a shows the average errors
of the dynamically estimated features. Fig. 1b shows the
errors in the camera position computed from the
estimated features. After about 500 frames (~16
seconds) the five inch accumulated error exceeds 5% of
the largest operating volume dimension. This
performance may be adequate to compensate for several
frames of fiducial occlusion, but it does not allow
significant tracking area extension.

A major source of errors in the above experiment is

the pose calculation method. We used a popular 3-point
analytical method [FISH81]. Fig. 2b plots the camera

Feature 3D Position Calibration Error

0

1

2

3

4

5

6

7

19
2

25
7

32
2

38
7

45
2

51
7

58
2

64
7

71
2

77
7

84
2

90
7

97
2

10
37

11
02

11
67

12
32

12
97

13
62

Frame number

C
al

ib
da

tio
n

er
ro

r (
R

M
S:

 in
ch

)

a. Feature 3D position calibration error

Error propagation in camera position

0

5

10

15

20

25

30

35

40

45

50

0 75 15
0

22
5

30
0

37
5

45
0

52
5

60
0

67
5

75
0

82
5

90
0

97
5

10
50

11
25

12
00

12
75

13
50

Frame number

C
am

er
a

po
si

tio
n

er
ro

r (
R

M
S:

 in
ch

)

b. Errors in camera position

Fig.1 Propagated errors in dynamic tracking range
extension experiment

position error produced by this method under simulated
test conditions. We project calibrated points to the
image plane and add Gaussian measurement noise
(�=0.5 pixels). The true camera position is placed at
grid points on a plane with the look-at point maintained
around the center of the triangle that is formed by the 3D
point positions (Fig. 2a). The X and Y (horizontal
plane) coordinates of the dots in Fig. 2b indicate the X
and Y coordinates of the tested true camera positions.
The vertical coordinate indicates the computed camera
position error. The errors are well behaved (~0) in most
cases. But this method has a known numerically
unstable area (curved triangular hole in Fig. 2b) and also
produces multiple solutions. (In our test, multiple
solutions were ignored by selecting the closest solution
to the true pose.) More accurate pose estimates are
needed to reduce the error growth rate in extendible
tracking.

Z

Y

X

Grid of true camera position
(X=-30~30, Y=-27~33, Z=40)
step = 0.5

Fiducials

Camera

(-6.1,0.2,12.0)

(6.2,0.3,8.0)

(0.5,10.4,9.0)

Look-at point

a - Experiment sequence

(1) true camera position is iterated on the grid points
(2) for a given true camera position:

Image coordinates of fiducials are computed, adding 0.5 pixel
Gaussian noise, then based on the fiducial 3D positions and
corresponding image coordinates, camera pose is computed.

b – Computed camera position error

Fig. 2 Accuracy test of 3-point pose method

Our criteria for pose calculation methods suited to

dynamically extendible AR tracking are as follows:

�� Real-time pose computation (<20 ms/estimate)
�� Accurate solutions when given accurate data, yet

robust solutions in the presence of measurement
and calibration errors. The method should also
facilitate outlier culling in the presence of gross
errors (e.g., incorrectly identified features).

�� Adaptive use of available information in a frame.
When more information (features) are available
in a frame, the method should use them to
increase accuracy. When little information is
visible, it should make the best estimate and
reduce its confidence in the solution.

Methods that use all available information (N-point
methods) are generally robust because errors and noise
can be averaged out [DEME95]. In terms of the
minimum number of features required for tracking, the
lower, the better, but three or four visible features per
frame are consistent with theoretical minimums.

2. Background

In this section, vision-based pose calculation
methods are surveyed in light of our above criteria for
application to extendible AR tracking.

Our test method is based on three calibrated point
correspondences. Methods have been proposed to select
the most likely solution among the multiple solutions
[SHAR97]. We weighted several heuristics to rank the
possible pose solutions [NEUM98], however, it is still
unstable over a significant area and the heuristics fail in
some situations (Fig. 2b). Fishler and Bolles suggested
“Random Sample Consensus” as a method of smoothing
data containing a significant percentage of gross errors
[FISH81]. They applied this method to the 3-point pose
method with success in removing the effects of gross
errors. However, their method does not have a time
limit (performing random trials), making it unsuitable
for real time applications.

Horaud et al. developed a four point pose method
using non-coplanar points. Geometric constraints are
used to solve biquadratic polynomial equations with one
unknown [HORA89]. They assert that their method is
real-time, providing fewer solutions than 3-point-based
methods, and is more stable (not dependent on the
relative orientation of the image plane and scene plane).
The problem of multiple solutions persists and near
coplanar points and noise produce unstable results.

Ganapathy computes camera position and orientation
using a non-iterative analytical method [GANA84]. His
method also employs only 3 points (for external camera
parameter estimation), and in general, there are multiple
solutions. Although it can be extended to using n-points,
it requires iterative optimization.

Uenohara et al. used a recursive method (Newton’s
method: multiple DSP chip implementation) for 6DOF

pose estimation and coplanar invariants for direct
computation of 2D-image overlay [UENO96]. This is
not suited for more general software-based 3D
annotation.

There are many methods for recovering pose by
iteratation (Newton-Raphson) [LOWE91] [YUAN89].
However, these require initial approximations and can
be computationally expensive [DEME95]. Also the
solutions can converge to local minima if the initial
values are not close to the true solution [OLIE97].
Dementhon et al. designed an iterative algorithm that
does not require initial estimates and performs in real-
time [DEME95]. However, their method uses scaled
orthographic projections and did not fully used the fact
that rotation matrices are orthonormal.

Researchers also used curves or surfaces for pose
estimation [FELD97][KRIE90], which are not relevant
to our problem. Recently, researchers from LORIA
combined 3D features and 2D correspondences to
compute accurate camera pose changes [SIMO98].
Because the relationship between corresponding points
is a function of camera motion, the camera pose
accuracy can be improved using a cost function that
counts the re-projection error and matching error. This
work also uses a robust M-estimator for managing false
matches. Although this method is robust and accurate, it
is not real-time (about 25 seconds per frame) and it only
stabilizes camera motion, not absolute pose.

 In the field of Structure from Motion, researchers
seek to recover camera motion and the model parameters
simultaneously. For example, Azarbayejani et al.
demonstrates a recursive algorithm to estimate object
structure, camera motion, and camera focal length
[AZAR95]. A minimum of 7 points is required, but in
practice more points are needed for smoothing. The
method is also sensitive to noise. Other methods that
use the essential or fundamental matrix [HART95] rely
on polynomial manipulations, which are also unstable
[OLIE97].

Welch et al. designed a pose filter or estimator that
accepts one point measurement (or constraint) at a time
[WELC97]. The computational overhead of this method
(called SCAAT) is small, facilitating real-time
applications, and it exhibits robust behavior with noise.
SCATT was developed for a high update rate (>1KHz)
active beacon system that measured one point at a time.
We also use the idea of processing one point at a time,
however given that video images are snapshots
containing multiple point measurements taken at the
same time, but at a much lower rate (30Hz), we develop
our filter specifically for video-based tracking.

Azuma et al. used gyros and accelerometers with
active beacon tracking [AZUM94]. A Kalman filter
predicts the user’s head motion. Our second pose

calculation method also uses a Kalman Filter to smooth
its pose estimates.

3. New Methods

This section presents our two approaches to vision-
based pose computation. One method is based on robust
averages of 3-point solutions. The other is based on an
iterative Extended Kalman Filter (iEKF), and SCAAT
(Single Constraint At A Time) filter [WELC97]. Our
methods are designed specifically for video frame rates
and over-constrained measurements per frame that are
typical of passive vision systems.

3.1. Robust Averages of 3-Point Solutions (RA3)

To address the multiple solution problems and
instabilities of the simple 3-point pose method (shown in
Fig. 2), we take robust averages of 3-point solutions.
First, the features whose 3D position uncertainties are
below a threshold are selected. (Note that these features
may have been calibrated off-line or dynamically on-
line.) Second, the feature positions in the image are
analyzed to select a set of evenly distributed features.
Four features closest to the corners of the image, and
two features closest to the center of the left and right
halves of the image, are selected. A maximum of twenty
triples from these six points is robust-averaged with
outlier culling.

As can be seen from Fig. 2, there are pose outliers
due to numerical instability. For robust least-square
solutions, the M-estimator has been suggested
[HUBE81] [SIMO98]. We used a real-time
approximation of Huber’s M-estimator. Details are
found in Appendix A.

After the robust M-estimator is computed, a linear
Kalman filter applies temporal smoothing. In our case,
the measurement and the Kalman filter state have the
same dimension, and the measurement equation and
process equation are linear (Fig. 3). Currently, a simple
dynamic equation with 0 acceleration is to effect
smoothness.

This pose solution makes use of both spatial (by
feature distribution) and temporal (by smoothing using a
linear Kalman filter) information.

Camera Pose
(translation, rotation matrix)

<Translation, rotation>

Z: <translation, translational vel.,
Orientation, rotational vel.>

Add velocities

12x1

Rotation conversion

3x1, 3x1

3x1, 3x3

�t

�

�

���

�

�

�

�

�

��

��

��

��

�

��

�

PKIP
ZKXX

ZZZ

tRPPK
XZ

tQtAPtAP

XtAX
T

kk

kk

)(

~ˆˆ

ˆ~
))((

ˆˆ
)()()(

ˆ)(ˆ

1

1

1

���

�

Measurement=state: H=identity

Fig. 3 Linear Kalman Filter for temporal smoothing

Fig. 4 Shows how the pose solutions is improved by

averaging, robust M-estimation, and Kalman filtering.
Gaussian noise (� = 0.5-pixel) was added to the
measurement of simulation data. The 3-point method is
greatly enhanced by averaging (Fig. 4a). The M-
estimator removes the effects of incorrect
correspondences and performs outlier (e.g., gross error)
culling. Even with correct data and no outliers, the
result was improved in many frames (Fig. 4b) showing
reduced sensitivity to noise. Lastly, the linear Kalman
filtering smoothed the camera pose enhancing the
camera position accuracy (Fig. 4c). In this and many
other pose calculation methods, camera orientation is
calculated based on camera position and feature
correspondences, so the orientation accuracy depends on
the position accuracy. Thus, we did not present the
charts for orientations. The improvements are
summarized in Table 1. with averages and standard
deviations of errors. These error statistics clearly show
the benefits of averaging, applying robust M-estimator,
and Kalman filtering.

Improvement by Averaging

0

0.5

1

1.5

2

2.5

0 26 52 78 10
4

13
0

15
6

18
2

20
8

23
4

26
0

28
6

31
2

33
8

36
4

39
0

41
6

44
2

46
8

49
4

Frame number

C
am

er
a

Po
si

tio
n

Er
ro

r (
R

M
S)

3-point-based

Averages

Improvement by M-estimator

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 26 52 78 10
4

13
0

15
6

18
2

20
8

23
4

26
0

28
6

31
2

33
8

36
4

39
0

41
6

44
2

46
8

49
4

Frame Number

C
am

er
a

Po
si

tio
n

Er
ro

r (
R

M
S)

Averages

M-estimation

Improvement by using Linear Kalman Filter

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 27 54 81 10
8

13
5

16
2

18
9

21
6

24
3

27
0

29
7

32
4

35
1

37
8

40
5

43
2

45
9

48
6

Frame Number

C
am

er
a

Po
si

tio
n

Er
ro

r (
R

M
S)

M-estimation

with KF

Fig. 4 Improvement by averaging (a - top), robust M-
estimation (b - middle), and temporal smoothing with
Kalman filtering (c - bottom).

 3-point Avg. M-est. w/ KF

Mean 0.350313 0.169502 0.15565 0.150282

� 0.379892 0.09245 0.091413 0.0753

Table 1. Improvement in averages and standard
deviation in errors

3.2. Iterative Extended Kalman filter (iEKF)

This method iterates an Extended Kalman Filter
(EKF) using all the usable point measurements available
in a frame. We call this method iterative EKF (iEKF) to
differentiate from Iterated Extended Kalman Filter
(IEKF) which iterates in Taylor series expansion. As
mentioned previously, this method is a variation of
SCAAT, which was designed for sensory devices that
read incomplete information sequentially and

measurement systems that fuse the incomplete
information to update the state. A SCAAT filter uses the
incomplete information in order to partially update the
state in under-constrained cases without incorrect
simultaneity assumption. However, measurements in
passive vision systems are often over-determined
providing enough information simultaneously to
completely update the state. SCAAT was successful for
tracking systems of high frequencies (e.g., UNC’s Hiball
tracker: >1KHz), and its performance on tracking
systems of low frequencies (e.g., passive vision tracker:
7-30Hz) is not well known. The high frequency updates
of the SCAAT filter may be compensated for by over-
determination of the vision-based tracker.

Because of the low measurement rate of video
tracking, it may be impossible to use only one
measurement at each time step (frame) and obtain
reasonable estimates. We use many or all of the
measurements available at each time step in a point by
point iterative update of the state. For each new frame
time, we predict the camera state based on the prior filter
state and a model. Suppose there are N 2D feature
measurements observable for a frame. We use these
measurements to correct the prediction in an iterative
way, using each measurement once. After using all the
measurements for a frame, we zero the orientation
elements of the state vector and update the external
orientation in the form of quaternion.

We use six parameters (x, y, z, �, �, �) to represent
the state of camera. These six elements have their own
motion curves we approximate as quadric curves. Let

ix represent a curve, then

ttxtxttx
ttxttxtxttx

iii

iiii

��

���

)()()(
2/))(()()()(2

����

���

���

����

},,,,,{ ���zyxi �

We use terms
2
)()(

2ttxi
�

�� and ttxi �)(�� to model

process noise. Because state transition matrix A
implements the relationships

)()(
)()()(

txttx
ttxtxttx

ii

iii

��

�

��

���

�

��

We can set the process noise matrix as follows

2

3

4

)(],)[(

2/)(],[],)[(

4/)(],)[(

tqjjtQ

tqijQjitQ

tqiitQ

j

i

i

��

��

��

�

��

�

)}.(),.(),,(),,(),,(),,{(),(

)},(),,(),,(),,(),,(),,{(),(

)},(),,(),,(),,(),,(),,{(),(

������

������

������

������������

������

zzyyxxjj

zzyyxxji

zzyyxxii

�

�

�

},,,,{ , ��� qqqqqqq zyxi �

And iq is a process noise constant that reflects the noise

in motion. Large values for iq mean more uncertainty
of prediction and the filter will correct the estimate over
a relatively large search space. On the other hand, small
values for iq mean less uncertainty of prediction and
the filter will correct the estimate over a relatively small
search space.

For example, if we set iq = 1, it means to search
camera position over a range of about 0.5mm and
camera orientation in the range of about 0.03 degree. If
we set iq equal to 100, it means to search camera
position in the range of about 5 mm and search camera
orientation in the range of about 0.3 degree. Fig. 5 is the
RMS error in camera position when iq = 1 and 100
using 9 fiducials and 0.5 pixels measurement noise.

Position Error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 26 51 76 10
1

12
6

15
1

17
6

20
1

22
6

25
1

27
6

30
1

32
6

35
1

37
6

40
1

42
6

frame Id

R
M

S(
in

ch
)

q=1

q=100

Fig. 5 RMS error of camera position with different
static process noise

From Fig. 5, we see that when the process noise is

large the peak error is small, but we have more jitters.
When the process noise constant is small the peak error
is large but with less jitters. We attempt to dynamically
tune our process noise to reduce the error where
possible. When there is a large change in camera state
there is often large image feature motion in consecutive
frames. If we measure large (above a threshold) feature
motions between frames we use a large process noise.
For small feature motions we use small process noise.
Fig. 6 compares the results obtained by using the
dynamic noise and small static noise. Fig. 7 compares
the dynamic process noise and large static noise. We
see that overall the error behavior is better for dynamic
noise than for either of static cases.

Position Error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 26 51 76 10
1

12
6

15
1

17
6

20
1

22
6

25
1

27
6

30
1

32
6

35
1

37
6

40
1

42
6

frame_id

R
M

S(
in

ch
)

small static noise

dynamic nosie

Fig. 6 RMS error for camera position with small
static noise and dynamic noise

Position Error

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 24 47 70 93 11
6

13
9

16
2

18
5

20
8

23
1

25
4

27
7

30
0

32
3

34
6

36
9

39
2

41
5

43
8

frame Id

R
M

S(
in

ch
)

large static nosie

dynamic noise

Fig. 7 RMS error for camera position with large
static noise and dynamic noise

4. Experiments and Results

4.1. Synthetic Experiments

We performed synthetic data experiments to show
that the proposed methods satisfy the pose computation
method criteria of section 1.

For synthetic camera motion generation, a
mechanical digitizer was used to generate 6DOF pose
sequences or keyframe interpolations of viewpoints and
look-at points were used. Gaussian noise of various
standard deviations was added to the measurements.

The average computation times (with 6-14 points in
view) for RA3 and iEKF were 3.6ms and 15 ms,
respectively. Considering 30-70ms for image analysis
and 25-40ms for virtual object rendering, computational
overhead of both methods are small and the whole
process runs at about 8-14Hz on a 450 MHz Pentium
CPU.

The accuracy was tested comparing the projections
of 3D-points using true camera pose and estimated
camera pose. Two 3D-points were projected in 500 test
frames. Averages of projection errors are shown in
Table 2 for two measurement noise levels.

Unit: pixel RA3 iEKF
� = 0.25 0.55 0.29
� = 0.5 1.02 0.52

Table 2. Pose feature projection accuracy

4.1.1. Different Noise Levels
Computed camera pose solutions are compared with

true values. Measurement noise levels were � = 0.25
and � = 0.5 pixel. The pose accuracy of iEKF was
slightly better than RA3 as was its projected pixel error
accuracy. Fig. 8 shows the camera position and
orientation errors.

Comparisons (Position): w/ different noise level

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

42
5

Frame Number

C
am

er
a

Po
si

tio
n

Er
ro

r (
R

M
S:

in
ch

)

RA3: 0.25
iEKF: 0.25
RA3: 0.5
iEKF: 0.5

a – Camera position error for two noise levels

Comparison (Orientation): with different noise

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 24 48 72 96 12
0

14
4

16
8

19
2

21
6

24
0

26
4

28
8

31
2

33
6

36
0

38
4

40
8

43
2

Frame number

O
rie

nt
at

io
n

er
ro

r (
R

M
S:

 d
eg

re
e)

RA3: 0.25
iEKF: 0.25
RA3: 0.5
iEKF: 0.5

b – Camera orientation error for two noise levels

Fig. 8 Camera position and orientation errors for
two measurement noise levels.

4.1.2. Processing Different Numbers of Points

Processing different numbers of points affects the
pose accuracy. Fig.9a shows pose solutions using 3, 4,
and 7 points. Fig.9b is a zoomed segment of Fig. 9a for
the segment between the 180th and 230th frame to better
show how more points reduces pose errors.

An interesting point is that useful iEKF tracking is
possible using only 2 points for a limited number of
frames (Fig. 9c). This suggests that even if less than 3
points are available on average in a video sequence,
iEKF may still track the camera state with reasonable

accuracy. (More analysis and testing needs to confirm
this.)

Comparison: with different number of points

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 24 48 72 96 12
0

14
4

16
8

19
2

21
6

24
0

26
4

28
8

31
2

33
6

36
0

38
4

40
8

43
2

Frame number

C
am

er
a

po
si

tio
n

er
ro

r (
R

M
S:

 in
ch

)

RA3: 3 points
RA3: 4 points
RA3: 7 points
iEKF: 3 points
iEKF: 4 points
iEKF: 7 points

a – Using 3, 4, and 7 points

With different number of points
(200th-249th frames)

0

0.1

0.2

0.3

0.4

0.5

0.6

18
0

18
3

18
6

18
9

19
2

19
5

19
8

20
1

20
4

20
7

21
0

21
3

21
6

21
9

22
2

22
5

22
8

Frame number

C
am

er
a

po
si

tio
n

er
ro

r (
R

M
S:

 in
ch

) RA3: 3 points
RA3: 4 points
RA3: 7 points
iEKF: 3 points
iEKF: 4 points
iEKF: 7 points

b - Close view of (a) in 180th~230th frame

Tracking with 2 points

0

2

4

6

8

10

12

14

16

18

1 25 49 73 97 12
1

14
5

16
9

19
3

21
7

24
1

26
5

28
9

31
3

33
7

36
1

38
5

40
9

43
3

Frame number

Er
ro

rs
 (R

M
S:

 in
ch

, d
eg

re
e)

Position

Orientation

c – Tracking using 2 points: iEKF

Fig. 9 Tracking with different number of points

4.1.3. Managing Outliers
Vision-based methods are subject to have outlier

problems. Fig. 10a is an example of a gross error
resulted from incorrect fiducial identification (the cross
mark on a pencil sharpener in the center of the image
indicates that the pencil sharpener was detected as a
fiducial).

Measurement outliers were added (in addition to
�=0.5 pixel Gaussian noise) to test the robustness of the
methods (one feature outlier in 42nd~50th frame and

150th~162nd frame, two feature outliers in 343rd~344th
frame; outlier displacements were 100~250 pixels).

RA3 method implements an approximated robust M-
estimator (Appendix A.) and manages the outlier cases.
Although it is difficult to implement robust statistical
method directly to the iEKF method, the projection of
the current feature can be compared with the
measurement to reject outliers using a priori covariance
[PRES93][BROI90]. As a result, both methods are
robust in the presence of outliers (Fig. 10b).

Incorrect fiducial
identification

a - An example of incorrect fiducial identification

Outlier Effect

0

0.1

0.2

0.3

0.4

0.5

0.6

0 24 48 72 96 12
0

14
4

16
8

19
2

21
6

24
0

26
4

28
8

31
2

33
6

36
0

38
4

40
8

43
2

Frame number

C
am

er
a

po
si

tio
n

er
ro

r (
R

M
S:

 in
ch

) RA3: with Outliers
RA3: without Outliers
iEKF: with Outliers
iEKF: without Outliers

b – Both methods are not affected by outliers

Fig. 10 With presence of outliers

4.1.4. Sudden Camera Motion
Sudden camera motion is generated to test the

convergence stability of the methods. Both methods are
stable providing pose solutions close to the true values.
Fig. 11 shows the camera X coordinates. The pose
solutions of the two methods are very close to the true
pose even with sudden camera motion. Results of other
coordinates are similar.

Camera X Coordinates

0

5

10

15

20

25
1 15 29 43 57 71 85 99 11
3

12
7

14
1

15
5

16
9

18
3

19
7

21
1

22
5

23
9

25
3

26
7

Frame number

X
C

oo
rd

in
at

es
 (i

nc
h)

True X

RA3: X

iEKF: X

Fig. 11 Stability under sudden camera motion:
camera X coordinates

4.1.5. Dynamic Calibration

The new methods were tested with the dynamic
calibration test of Fig. 1. Tracking was started with 6
calibrated features, and dynamic calibration of 94
uncalibrated features was done in a 100”x30”x20”
volume. The propagated errors were significantly
reduced for both methods compared to the simple 3-
point method. These results indicate that it may be
feasible to use autocalibration over a long term and large
area with modest error propagation. More tests and a
real system are needed to verify or demonstrate the
viability of extendible tracking for real applications.

With Dynamic Calibration

0

5

10

15

20

25

30

35

40

0 69 13
8

20
7

27
6

34
5

41
4

48
3

55
2

62
1

69
0

75
9

82
8

89
7

96
6

10
35

11
04

11
73

12
42

13
11

13
80

Frame number

C
am

er
a

po
si

tio
n

er
ro

r (
R

M
S:

 in
ch

)

3-point method

RA3

iEKF

Fig. 12 Propagated camera position error with
dynamic calibration

4.2. Real Data Experiment

A sequence of images was captured and digitized off-
line to compare the two new methods. The image
contains 15 multi-ring fiducials [CHO99] and the virtual
objects include a torso of Venus, a virtual window, and
annotations (Fig. 13). The re-projection errors between
the measurement and projection of fiducials were
computed (Fig. 14). The errors were predominantly
under 1.0 pixel with both methods. Note that all the
features are calibrated off line. No autocalibration is
done in this test.

a – fiducial placement

b - virtual object overlay

Fig. 13 Real environment and virtual object overlay
for experiment with real data

Real Data: fiducial re-projection error

0

0.4

0.8

1.2

1.6

2

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

Frame number

R
e-

pr
oj

ec
tio

n
er

ro
r (

R
M

S:
 p

ix
el

)

RA3

iEKF

Fig. 14 Re-projection errors in real data experiment

5. Conclusion and Discussion

We described the desirable criteria for vision-based

pose computation methods for supporting dynamic
tracking extension. In summary these are real-time,
robust, accurate, and n-point-based.

RA3 is fast (about 4 times faster than iEKF); robust
under sudden camera motion and in the presence of
outliers; accurate with about 1.0 pixel re-projection error
(�=0.5 pixel measurement noise); and capable of using a
wide range of points (3-6 in our tests).

iEKF is also fast enough for real time applications,
though it is slower than RA3; robust under sudden
motion and in the presence of outliers; accurate within
about 0.52 pixel of re-projection error (�=0.5 pixel
measurement noise); and fully n-point-based.

iEKF also has no minimum-points requirement for a
given frame. It can estimate pose if only one point is

available in a frame (SCAAT case). As with SCAAT,
only one feature is processed at a time, making the pose
computation and uncertainty management relatively
simple.

RA3 is fast and robust under noise measurements
because of the robust M-estimator. Applying averaging
has also advantage when the result (pose) is applied to a
Kalman filter for temporal smoothing because the
averaged result is Gaussian by central limit theorem.
However, the accuracy is lower than that of iEKF.

The dynamic calibration experiment showed that both
methods reduced the propagated error significantly,
offering greater freedom of mobility and accuracy to the
users of vision-based tracking systems.

Mpeg video files of the real data experiment are
available for comparisons in our web page
(http://star.usc.edu/~junp/iwar99.html).

6. References
[AZAR95] A. Azarbayejani and A. Pentland, “Recursive
Estimation of Motion, Structure, and Focal Length”, IEEE
Transactions on Pattern Analysis and Machine Intelligence,
Vol. 17, No. 6, June 1995
[AZUM94] Ronald Azuma, Gary Bishop, “Improving Static
and Dynamic Registration in an Optical See-through HMD”,
Proceedings of Siggraph94, Computer Graphics, pp.197-204
[BROI 90] T.J. Broida, S. Chandrashekhar, and R. Chellappa,
“Recirsive 3-D Motion Estimation from a Monocular Image
Sequence”, IEEE Transactions on Aerospace and Electronic
Systems Vol. 26, No. 4, July 1990
[CHO99] Youngkwan Cho, Scalable Fiducial-Tracking
Augmented Reality, Ph.D. Dissertation, Computer Science
Department, University of Southern California, January 1999
[DEME95] D. Dementhon and L. Davis, “Model Based Object
Pose in 25 Lines of Code”, International Journal of Computer
Vision, 15:123-141, 1995
[FELD97] J. Feldmar, N. Ayache, and F. Betting, “3D-2D
Projective Registration of Free-Form Curves and Surfaces”,
Computer Vision and Image Understanding, 65(3):403-424,
1997
[FISH81] Martin A. Fischler and Robert C. Bolles, “Random
Sample Consensus: A Paradigm for Model Fitting with
Applications to Image Analysis and Automated Cartography”,
Communications of the ACM, Vol.24, No.6, June 1981,
pp.381-395
[GANA84] Sundaram Ganapathy, “Decomposition of
Transformation Matrices for Robot Vision”, Proceedings of
Int. Conf. Ronotics and Automation, 1984, pp. 130-139
[HART95] R.L. Hartley, “A Linear Method for
Reconstruction from Lines and Points”, ICCV, pp.882-887,
1995
[HORA89] Radu Horaud, Bernard Conio, and Oliver
Leboulleux, “An Analytic Solution for the Perspective 4-Point
Problem”, Computer Vision, Graphics, and Image Proceeding
47, 33-44 (1989)
[HUBE81] Huber, Peter J., “Robust Statistics”, Wiley Series
in Probability and Mathematical Statistics,1981

[KRIE90] D. Kriegman and J. Ponce, “On Recognizing and
Positioning Curved 3D Objects from Image Contours”, IEEE
Transactions on PAMI, 12(12):1127-137, December 1990
[KUMA94] R. Kumar and A. Hanson, “Robust Methods for
Estimating Pose and a Sensitivity Analysis”, CVGIP:Image
Understanding, 60(3):313-342, 1994
[LOWE91] Lowe, D.G., “Fitting Parameterized Three-
Dimensional Models to Images”, IEEE Trans. On Pattern
Analysis and Machine Intelligence, Vol. 13, pp.441-450, 1991
[MAYB79] P.S. Maybeck, Stochastic Models, Estimation, and
Control, Volume 1, Acamedic press, Inc., 1979
[NEUM96] U. Neumann, Y. Cho, “A Self-Tracking
Augmented Reality System,” Proceedings of ACM Virtual
Reality Software and Technology ‘96, pp. 109-115
[NEUM98] U. Neumann, J. Park, "Extendible Object-Centric
Tracking for Augmented Reality", 1998 IEEE Virtual Reality
Annual International Symposium, pp.148-155, 1998
[OLIE97] John Oliensis, “A Critique of Structure from Motion
Algorithms”, NECI Technical Report, April 1997,
http://www.neci.nj.nec.com/homepages/oliensis/poleiccv.ps
[PARK98] J. Park, U. Neumann, “Natural Feature Tracking
for Extendible Robust Augmented Realities”, International
Workshop on Augmented Reality (IWAR) '98.
[PRES 93] William H. Press, Saul A. Teukolsky, William T.
Vetterling, Brian P. Flannery, Numerical Recipes in C : The
Art of Scientific Computing, 2nd edition (January 1993),
Cambridge University Press; ISBN: 0521431085, p.705
[SHAR97] R. Sharma, J. Molineros, “Computer Vision-Based
Augmented Reality for Guiding Manual Assembly,” Presence:
Teleoperator and Virtual Environments, Vol. 6, No. 3, pp.
292-317, June 1997
[SIMO98] G. Simon, V. Lepetit, and M.-O. Berger,
“Computer Vision Methods for Registration: Mixing 3D
Knowledge and 2D Correspondences for Accurate Image
Composition”, International Workshop on Augmented Reality
(IWAR) '98
[UENO96] M. Uenohara and T. Kanade, “Vision-Based
Object Registration for Real-Time Image Overlay”, Journal of
Computers in Biology and Medicine, 1996
[WELC97] G. Welch, G. Bishop, “SCAAT: Incremental
Tracking with Incomplete Information,” Proceedings of
Siggraph97, Computer Graphics, pp. 333-344
[YUAN89] Yuan, J.S.C. “A General Photogrammetric
Methods for Determining Object Position and Orientation”,
IEEE Trans. On Robotics and Automation, Vol. 15, pp.129-
142

Appendix A. Real-time approximation of
Robust M-estimator

Generally, robust M-estimators require searches to

find the M-estimations, which is not appropriate for real-
time applications. However, an approximation can be
obtained utilizing a priori averages with less
computation.
If we apply the M-estimation technique using Huber’s
function �(x), the minimization equation is as follows.

��

�
�
�

��

�
�
�

�	�
	��
	
�

�

��

�
�
�

��

�
�
�

��
	
�

�

��

���

��

�

�

�������

����

cpp
i

cpp
i

cpp

i

p

cpp
i

cpp

i

p

i
ip

i
ip

iii

ii

cppccppc
pp

cppc
pp

pp

r

)
2

()
2

(
2

)(
min

)
2

(
2

)(
min

)(min

)(min

2

2

�

�

This equation is difficult to evaluate analytically
requiring search because of the conditions p-pi>c etc.:
Conditions depend on the unknown value of p.
However, because pp � , we can approximate the
condition using the average.

��

�
�
�

��

�
�
�

��	�

�
��

�
�
�

��

�
�
�

	��	

�
��

�
�
�

��

�
�
�

	�	�

�		�

�

	

�
��

�
�
�

��

�
�
�

	�	��		��
	

�

��

�
�
�

��

�
�
�

	�	��		��
	

��

�
�
�

��

�
�
�

	�	��		��
	

���

���

���

���

���

���

������

�������

�������

�������

�������

�������

cppcpppp
i

cppcppcpp
i

cpp
i

cpp
i

cpp

i

cpp
i

cpp
i

cpp

i

cpp
i

cpp
i

cpp

i

p

cpp
i

cpp
i

cpp

i

p

iii

iii

iii

iii

iii

iii

cpcpp
N

p

ccpp

cppc
p

cppc
p

pp
p

cppccppcpp
p

cppccppcpp

cppccppcpp

)()(1

0)()(

0)
2

()
2

(
2

)(

0)
2

()
2

(
2

)(

)
2

()
2

(
2

)(min

)
2

()
2

(
2

)(min

2

2

2

2

where ��� kc .
Consequently, we can use pseudo measurement
suggested by Huber. To devise robust algorithm that
can be easily patched into existing programs, Huber
suggest pseudo-observation, for example, in least square
fitting:
Let iŷ fitted value of yi’s
 iii yyr ˆ��

is Standard error of yi or rI

Pseudo-observations y*
i is defined as

�
�

�
�

�

�
�

�
�

�

�	
��

�
�
�

�

�

iiiii

iiiii

iiii

i

scyyifscy
scyyifscy
scyyify

y
ˆˆ

ˆˆ
ˆ

*

Constant c regulates the amount of robustness: good
choose is btw 1 and 2, e.g., c=1.5

However, there needs a method to differentiate between
gross errors (e.g., from multiple solutions) and
contaminated outliers (e.g., from noise measurement).
This can be achieved by throwing away measurements
with io scr �� where e.g., 4�oc .

