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ABSTRACT 
 

This paper describes an automated approach for dynamic object modeling and visualization of a 3D 
environment.  Moving objects are detected automatically and represented with video textures projected on 
their convex hulls.  These objects are tracked using a winner-takes-all methodology.  To achieve robust 
tracking, a new matching criterion that considers both spatial and temporal coherences of objects is 
presented.  We demonstrate the effectiveness of using this new approach to dynamic shape modeling and 
representation for creating 3D visualizations of dynamic events observed in real environments.  
 
 

INTRODUCTION 
 

Civil and defense applications often require and employ 3D models of operational areas.  In many 
cases 3D models of dynamic objects or events are of particular value since they facilitate surveillance, 
response, and real-time situational awareness in highly-occluded urban settings.  The personnel who 
simulate, monitor, and execute responses to natural or man-made events can gain insights and make better 
decisions if they have a comprehensive 3D view of the structures and activities occurring at an operational 
scene.  Our goal is to create a 3D “world in miniature” that accurately models the 3D structures and 
dynamic events of a real world area of interest. 

This paper focuses on algorithm for automatic analysis of imagery to track, model, and visualize 
dynamic scene elements such as people or vehicles at a scene.  This work is motivated by our recent 
research on multi-sensor data fusion and visualization.  An Augmented Virtual Environment (AVE), is a 
novel framework for fusing a number of information sources (e.g., video, image, graphics, text, maps) into 
a single 3D representation of a scene.  We believe that people can best comprehend complex spatial 
information when it is presented in a common spatial context that mimics the real world [Neumann, 2003].  
An AVE system uses a geometric scene model as a 3D substrate for projecting multiple images gathered by 
fixed or moving image sensors.  The resulting visualization is that of a world-in-miniature that depicts the 
corresponding real world scene and dynamic activities, providing observers with a natural browsing and 
multi-resolution view of the dynamic spatio-temporal data provided by sensors distributed over a wide 
environment.  

Figure 1 shows an AVE scenario of a campus building complex with an aerial photograph and three 
video streams projected onto the model.  In this aerial view, three moving cameras are depicted by their 
red wireframe viewing frustums to show their current positions and orientations in the world, and their live 
video data are projected onto the facades of the buildings in real-time.  Note that the visualization 
viewpoint is completely arbitrary, and the aerial view enables users to comprehend both the camera images 
and their relationships to the scene.  

In many cases, however, simple video projection onto the model does not properly display dynamic 
objects such as walking people or vechile that are not part of the substrate model.  Moving objects appear 
distorted and misinterpreted when simply projected onto the buildings, as show in Figure 4 (a).  For 
example, a top-view camera will capture a person walking in front of the building from a near vertical 
aspect.  A projection of that video will look realistic when viewed from an aerial viewpoint, however, if 
viewed from a ground-level viewpoint, the person looks strangely flat and distorted since the figure has no 



height in the model and the 
person’s image is simply painted 
on the street surface.  Such 
distortions and artifacts arise since 
images lack depth information.  

This paper addresses this 
technical barrier and pursues 
solutions for it.  We present new 
improvements to our previous work 
[Sebe, 2003], including a robust 
dynamic object detection and 
tracking method; convex-hull shape 
modeling; and dynamic model 
visualization.  We demonstrate the 
effectiveness of our new shape 
model for greatly improving the 
perception of dynamic events in 
urban areas.  

 
 

RELATED WORK 
 

Several recent systems address the problems of multiple sensor fusion and data analysis.  Distributed 
Interactive Video Array (DIVA) developed at the University of California at San Diego [Hall, 2002] 
employs multiple videos, images, and 2D maps for monitoring remote scenes.  The system has the 
capability for visualizing multiple 2D data sources, but does not address 3D visualization so the occlusions 
that occur in urban areas remain problematic.  Spann and Kaufmann (at BAE Systems) developed a 
system that fuse multiple aerial and/or ground images on 3D terrain models [Spann, 2000], but the system 
lacks video capability and dynamic object detection.  The VideoFlashlight system developed at Sarnoff 
Corporation provides visualizations of urban sites by fusing multiple video streams and 3D models [Kumar, 
2000], but does not address dynamic modeling of moving objects.  The Video Surveillance and 
Monitoring (VSAM) project, conducted at CMU and other institutions developed automated video 
understanding technologies, enabling a single human operator to monitor activities over a broad battlefield 
using a distributed network of active video sensors [Kanade, 1998].  The key idea of the VSAM system is 
to automatically detect and track people, vehicles, and their interactions from multiple video streams, and 
then insert selected images of interest into an environment map to reduce the operator’s cognitive load.  
Recently, a project called Virtual Soccer Match developed at Keio University, Japan, is able to fuse 
multiple video sequences in real time [Inamoto, 2003].  Dynamic objects (soccer players) are detected and 
visualized as pseudo-3D models.  This system is specific to soccer field layout – a planar ground model is 
assumed and multiple cameras are required to reconstruct 3D scene models.   While the above systems 
offer many useful capabilities, they lack the ability to fuse multiple video streams, images, data, and 
dynamic models as 3D elements in a common 3D scene model. 
 
 

DYNAMIC OBJECT DETECTION 
 
Assuming stationary cameras are used, our goal is a robust detection of moving objects under a variety 

of conditions including sensor noise, low-resolution, and varying illumination.  A trained background-
subtraction approach is employed to segment the moving objects from background.  This method is 
suitable for stationary cameras where a relatively long sequence of video (in the order of minutes) is always 
available for background learning [Harville, 2001].  Background learning is an important step in a 
segmentation approach.  There are several important factors that a background learning algorithm should 
deal with in order to achieve a robust segmentation, such as illumination change, dynamic background, 
high-traffic problems, camouflage, and occlusions. These problems have been extensively investigated, but 
better approach still needs to be pursued.  Simple background averaging or estimation by per-pixel 

Figure 1: An AVE system showing projections of three video 
streams (wire-frame frustums) and an aerial photograph within 
the USC campus area. 



Gaussian distribution is popular methods, but often fail to model higher order backgrounds (e.g. bi-modal 
backgrounds).  A per-pixel Kalman filter was also proposed for background estimation [Ridder, 1995], but 
its results have similar characteristics as that of the Gaussian distribution method.  To model complex 
multi-backgrounds, the Gaussian mixture model was suggested by Stauffer and Grimson [Stauffer, 1999].  
This method is able to prevent detection of bi-modal movements such as waving trees or flickering 
monitors, but suffers from the problems of the complex parameters tuning and implementation.  An 
improved approach was investigated in [Harville, 2001] by considered depth information for background 
learning.  In [Toyama, 1999] a method called Wallflower is proposed by incorporating the multiple tasks 
of pixel classification, region detection, and tracking to an integrated solution to handle complex 
background estimation.  An extensive survey of various background learning models is also given in this 
paper. 

The accuracy of background estimation directly determines the performance of a dynamic object 
detection system.  We proposed to use an adaptive variable-length time averaging algorithm to estimate 
background image.  A sliding window is used for time averaging to dynamically model a single 
distribution background.  Our experiments show that the method offers performance that is similar to that 
of a single Gaussian distribution.  However, the time averaging method typically requires a big memory 
buffer to be allocated for frame averaging within a sliding window, i.e. the size of the image buffer equals 
the product of the time-window length and the image size.  For example, a 256x256 size image using a 
length of 1500 time-window will result in 73.7M memory being allocated!  To track this problem, we 
developed a fast, low complexity, and low storage variable-length time averaging method.  In our method, 
only 2 image buffers are required: one for the actual background image, and one for temporary buffer. We 
start with an empty temporary buffer and at every frame, add current frame to this buffer.  We need N 
(typical N = 1500) frames for background estimation.  Since we only have two image buffers, we do not 
have to store any additional frames.  Once all N frames are added, we transfer the temporary buffer to 
background buffer by dividing each pixel value by N.  This division is performed to keep the pixel values 
between 0 and 255.  After the data transfer, the temporary buffer is initialized again to zero.  During the 
next N frames, we use current background image and estimate a new one with the temporary buffer.  In 
short, the background image is updated at every N frames with an average of the most current N frames. 

Background estimation is followed by a pixel subtraction processing to segment the foreground objects.  
Difference image is estimated by taking the absolute difference of the current frame and the estimated 
background image: 
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where ∆I is the difference image, I is current frame, and B is the estimated background image. 
The difference image is then binarized using a histogram-based threshold process.  A histogram of the 

difference image is calculated and converted into a cumulative distribution function used to for threshold 
estimation (i.e. HISTOGRAM_THRESHOLD).  The threshold could be estimated by simply setting to it a 
certain value so that only the top 5% differences are labeled as foreground objects.  However, using this 
method alone is not robust, since the method returns a value for threshold regardless of the existence of a 
moving object in the scene. In the case of no objects, noise is detected as foreground. We therefore propose 
to use equation (2) to determine the segmentation threshold.  
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,where MIN_THRESHOLD is a fixed lower bound (we use a value of 25/255). 
The difference image is filtered with the estimated threshold: a pixel having larger value than this 

threshold is classified as foreground, otherwise classified as background.   
Finally, a morphological filter [Jain, 1995] is operated on the segmented binary image to remove too 

small foreground areas, and then a two-pass 4-neigbors connectivity algorithm is used to label the 
segmented areas as moving objects or background [Gonzales, 1993]. 
 
 
 



DYNAMIC OBJECT MODELING 
 
The output of the object detection module is a labeling list of detected objects containing the object 

IDs and pixel locations.  Although this type of object representation is simple to use, it doesn’t contain 
any simple shape information.  We need to model them using a more compact graphic representation.  In 
our previous work, we use a dynamic single rectangular polygon to approximate the model of detected 
moving object which produce more realistic and less distorted AVE visualization [Sebe, 2003].  However, 
the rectangular model can not accurately describe the shape of the object, resulting in noticeable artifacts.  
In this paper, we propose to use 2D convex-hull representation to model the moving objects.  We feel that 
this new representation can be more realistic to describe a range of object shapes such as vehicles and 
people, achieving a comfortable visualization.  There are several methods to approximate or find convex 
hull of a dataset.  In our work, we employ a fast model fitting method proposed in [Andrew, 1979].  This 
method has computational complexity of O(n log n) and only requires an easy presorting on the input data 
[Sunday 2001].  
 

 
A convex hull representation is capable of capturing the spatial shape property of an object.  The 

representation is compact, needing only few parameters to control the shape variations.  Besides these 
spatial control parameters, in our work, we also estimate inter-frame object motions, and use the estimated 
motion vectors as temporal coherence descriptor of the moving objects.  The motion estimation is done by 
correlation matching (the sum of squared differences) between convex hulls of detected objects in 
neighboring frames.  A 5x5 search window is used in our current implementation.  For every detected 
object, a motion vector is estimated and used for robust object tracking.  Figure 2 (a) shows the results of 
using above approaches to detect and model a moving vehicle.  In this example, the detected vehicle is 
represented by 18 convex points.  For visual comparison, we also show the result of using a single 
rectangular polygon to model the moving vehicle Figure 2 (b).  

 
 

DYNAMIC OBJECT TRACKING 
 

The detected moving objects in the scene are interpreted as belonging to one of the possible states: 
appear, disappear, or track.  To do so, an object history is created and updated during the tracking 
procedure.  To decide which state is more appropriate for a particular object, a matching criterion is 
required.  A robust matching algorithm should account for both spatial coherence and temporal coherence.  
In our work, the spatial coherence criterion is defined as a function of overlap of current object with the 
known objects (object history) and their corresponding sizes, which is defined as: 

Figure 2: a moving vehicle is detected and modeled as a convex hull with 18 points (a), and a 
rectangular polygon (b)  

(a)                                        (b)
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where S1 and S2 are the size of objects O1 and O2, respectively, and ‘Int()’ is a function that returns the size 
of the overlapping of the two objects.  The spatial matching criterion contains three components: temporal 
coherence of objects (the size of overlap); geometric mean of objects (numerator); and arithmetic mean of 
objects (denominator).  Note that the ratio of the geometric mean and the arithmetic mean measures the 
confidence of shape matching of the two objects.  Figure 3 shows the behavior of this ratio for different 
values of S1 and S2.  

 

 
 
The overlap function Int() has an upper limit of min(S1, S2).  Although the overlap of two objects can 

be found by intersecting the two convex polygons, this procedure is too costly for a value which itself is an 
approximation.  To simplify computation, we use the object’s single polygon representation (i.e. a 
rectangle bounding the detected object) to compute the overlap.  Its matching result is very similar to that 
of a convex hull intersection. 

The motion vector that measures the temporal coherence of moving objects is also helpful for match 
tracking.  The cosine of the angle between two vectors measures their direction agreement.  (The Cosine 
is scaled to [0, 1] to simplify calculations.)  Considering both the direction and magnitude of vectors, we 
create the following temporal coherence criterion for motion matching: 
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where ||V1|| and ||V2|| are the magnitude of the motion vectors, and Θ is the angle between the two 

vectors.  This cost function has a range of [0, 1].  The maximum value of 1 is achieved when V1=V2.  
However, there is a singular case if we directly use equation (4).  Since the motion vector is estimated 
between two consecutive frames, slowly moving objects may produce zero motion vectors that result in an 
undefined match.  To handle this case, we modified equation (4) to obtain the following motion matching 
criterion: 

 

Figure 3: Ratio plot defined in equation (3) without the overlap parameter.  S1 and S2 are 
varied and maximum occurs when S1=S2.  The plot has a maximum of 1 (Red in color) and 
lowest value of 0 (blue in color).   
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Considering both spatial coherence and temporal coherence, the overall motion matching criterion is 

defined as: 
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where λ is a weighting constant.  λ = 0.5 is used in our experiments. 
The matching criterion is computed between every new detected object and a recent history of objects, 

resulting in a matching table of size M by N, where M is the number of history objects, and N is the number 
of new detected objects.  We match objects and assign appropriate object IDs using this matching table 
and a winner-takes-all mechanism.  The best match in the whole matching table is assigned first, and then 
both the object and its best history match are removed from the table.  This procedure is repeated until all 
objects are assigned.  For new objects that appear, the table will produce a zero row.  These objects are 
assigned new IDs and added to the object history. 

 
 

DYNAMIC OBJECT VISUALIZATION 
 

The tracked objects need to be placed into the 3D scene model for AVE visualization.  We use the 
assumption that tracked objects (people and vehicles) rest on the ground.  Objects are rendered as 2D 
planar convex polygons in 3D world.  The mid-point coordinate of the lower edge of the bounding box of 
a tracked object defines its contact point on the ground.  A ray from the camera viewpoint through the 
contact point in the image is intersected with the ground model to determine the 3D position for a dynamic 
pseudo-3D model of the moving object. 

 
To illustrate the effectiveness of our new dynamic model representation, Figure 4 shows a comparison 

of three ways to visualize live video streams containing moving vehicles and people.  Figure 4 (a) 
illustrates the image projection of a moving car without using any corresponding model.  The video 
cameras are at ground level so their projections of a car or a person appear distorted since there are no 
models of these moving objects in the 3D scene model.  The person and car appear to be “smeared” over 
the road and part of the building when viewed from our raised viewpoint.  Figure 4 (b) shows the result of 
applying the modeling approach in [Sebe, 2003] to the same scene.  In this result, the moving car is 
tracked and modeled using a rectangular polygon.  We can note that the rectangular model does not 
accurately capture the shape of the object, resulting in noticeable artifacts.  Figure 4 (c) is the result of 
using the approach in this paper.  The new model representation more accurately captures the shape of the 
moving vehicle, improving the display of video textures projected onto the model.  Figure 5 shows 
different results of the new modeling system.  People, cars, and SUVs are modeled and visualized without 
any human intervention.  Our current AVE display system achieves real time performance (~25fr/sec) on 
a 2.2GHz Pentium-4 workstation, including all the computations for using 3 live firewire cameras, one high 
resolution aerial photo, and a 3D model of the entire USC campus and surround areas (over 200 buildings). 

 



 

 
 

CONCLUSION 
 

We present a novel visualization system suited for visualizing 3D moving objects in large-scale urban 
areas.  The AVE system fuses multiple data sources, such as LIDAR, images, and video.  Dynamic 
object detection, modeling, and tracking enable our system to generate arbitrary views of both static and 
dynamic objects.  A convex hull representation is computed for geometric modeling and motion vectors 
are used for temporal modeling of the detected objects.  Furthermore, we developed a matching criterion 
that uses size, shape, location, and movement of the objects all at once.  A winner-takes-all object 
assignment procedure is used to track multiple objects in time and space.  Future work is required for 
multi-object tracking.  Splitting and merging of the objects is not supported in our current method. 
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Figure 5: Visualization results using the method proposed in this paper: (a) a human walking, (b) a 
small car, and (c) an SUV.  

Figure 4: (a) An image projection of a moving car without a dynamic model results in a distorted 
presentation, (b) the moving car is modeled as a rectangular polygon, and (c) is modeled as a convex 
polygon.  
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