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Abstract 
 
This paper presents a modeling system using airborne LiDAR and aerial imagery.  Our approach is a 
hierarchical technique that allows users to create a hierarchical building model composed of geometric 
primitives.  Linear primitives and high-order surface primitives are used for model fitting and refinement.  To 
improve accuracy and efficiency, we use image information to aid model and refine processes.  Both the 
knowledge-level and pixel-level information are used.  The texture and color information from aerial image is 
used to automate the segmentation process.  Building shape cues from range image are used to reduce the 
number of model hypotheses and computation complexity. Edges from high resolution aerial images are used to 
improve the model accuracy. We demonstrated the system’s flexibility and capability for modeling wide range 
of complex buildings. 
 
 

1 Introduction 

3D urban models have many applications in urban planning, environment monitoring, geo-information 
systems, traffic managements, utility services, and military operations.  In most of these cases the models of 
buildings, terrain features, and vegetations are the primary features of interest.  Although urban models are 
useful for the reasons stated above, the creation of detailed wide-area models remains at best a difficult and 
time-consuming task [Hu, 2003; Ribarsky, 2002].   A wealth of research, employing a variety of sensing and 
modeling technologies, has been conducted to create detailed building models from imagery or from laser 
sensing data.   Photogrammetry offers a cost-effective means to obtaining large-scale urban models.  The 
techniques in this category use 2D images without any a priori 3D data.  Different image sensors lend 
themselves to modeling systems developed for terrestrial or aerial images [Lee, 2000].  Recently, airborne 
LiDAR (Light Detection and Ranging) has become a rather important information source for generating high 
quality 3D digital surface models.   A LiDAR sensor system permits an aircraft flyover to quickly collect a 
height field for a large environment with an accuracy of centimeters in height and sub-meter in ground position.  
Multiple passes of the aircraft are merged to ensure good coverage.  Due to its advantages as an active 
technique for reliable 3D determination, LiDAR offers a fast and effective way to acquire models for a large 
urban site [Ahmed, 2002; Zhao, 2000].   

While different sensors provide varied data for scene modeling, each of these data sources and 
corresponding techniques has their own advantages and disadvantages.  Images proved detailed texture and 
color information and they can provide very high accuracy, making them necessary for texture data and 
appealing for extracting detailed model features.  On the other hand, LIDAR data samples are dense 3D samples 
of building and terrain surfaces.  A natural conclusion is to fuse these data sources to obtain more accurate and 
automatic urban models.  One single sensor technology seems unlikely to produce detailed and varying 
characteristics of building models.  Combining the geometry, photometry, and other sensing sources can 
compensate for the shortcomings of each sensing technology, and appears to be a promising methodology.  This 
is main motivation for our work.  In this paper, we address the issue of combining LiDAR and aerial imagery 
for rapid creation of accurate building models.   The basic tenets of this work are: features extracted from high-
resolution image can improve the accuracy of low-resolution LiDAR model features; and cues from LiDAR can 



aid in image segmentation, significantly reducing the computational complexity and processing time as well as 
improving the quality of model results. 

This paper presents our recent extensions to a complete modeling system [You, 2003].  LiDAR is used to 
acquire build models for large urban areas.  However, sample-rate limitations and measurement noise obscures 
small details and occlusions from vegetation and overhangs lead to the LiDAR model voids in many areas.  
Points on building edges and surfaces have to be segmented accurately from the ragged LiDAR model.  Our 
approach employs several morphological filters operating on the LiDAR range data, and texture and color from 
aerial imagery to segment the targeted objects from background.  To model the extracted 3D mesh model to 
produce constrained CG models, we present a primitive-based model refinement approach.   Based on the shape 
of building rooftop, we classify a building section into one of several groups, and for each group we define a set 
of appropriate geometry primitives, including standard CG primitives and high-order surface primitives, fitting 
to the building’s mesh data to represent the complete building structure.   

The rest of the paper is organized as following:  section 2 presents our primitive-based modeling system, 
section 3 discusses the approach of integrating aerial and range images to the modeling processes, section 4 
presents our experimental results, and concludes the paper. 

 
 

2 A primitive-based modeling system 

2.1 System Overview 
Our modeling system (Figure 1) begins with a model 

reconstruction phase followed by a model refinement and 
optimization phase. The model reconstruction phase 
processes raw LiDAR point cloud to create a regular-grid 
3D mesh model of scene. Geo-referencing, data re-
sampling, hole-filling, and tessellation comprise this phase.    

The model refinement and optimization phase 
consisting of building extraction, model fitting, and 
refinement components processes the reconstructed 3D 
mesh model to create hierarchical building models.  The 
global building footprints provided by the LiDAR and 
aerial imagery are used to determine the locations of 
buildings and extract them from surrounding terrain.  Based 
on the shape of a building rooftop, we classify a building 
section into one of several groups, and for each group we 
define a set of appropriate geometry primitives, including 
standard CG primitives and high-order surface primitives.  
Once a building is extracted, the geometry primitives are iteratively fit to the building’s mesh model data, and 
the best fitting models represent the complete building structure.  The model refinement is a hierarchical 
approach that allows users to create a hierarchical building model composed of geometric primitives.  This 
approach has demonstrated its flexibility and capability for wide range of complex buildings with irregular 
shapes. 

Model reconstruction 
(Hole-filling, tessellation)

Model classification 
 (Segmentation, detection) 

Model refinement and optimization 
(Building primitives, primitive selection, model fitting) 

LiDAR point cloud

Refined Building 

Range Image Aerial Image 

Edge Information Surface Information

Figure 1. Algorithmic structure and work flow of
proposed modeling system. 

 
2.2 Primitive-based model refinement 

According to the shapes of building rooftops (flat-roof, slope-roof, dome-roof, gable-roof, etc.), a set of 
geometric primitives are defined.  They are linear fitting primitives: plane, cube, wedge, cylinder, polyhedron, 
and sphere, and nonlinear fitting primitive: superquadrics.  These geometric primitives are then fit to the local 
mesh data to represent the local structures of building sections.  Finally, the fitted local models are assembled to 
a complete building model.  

Linear Primitive Fitting. Linear primitive models include: plane, cube, wedge, cylinder, polyhedron, and 
sphere. The parameters of these primitive models are estimated using linear least square fitting techniques.  To 
fit a primitive model into a reconstructed mesh model, there are two types of parameters need to be estimated, 
i.e. edge parameter and surface parameter.  So, the fitting process also includes two steps: edge fitting and 
surface fitting.   In the following we detail a cube primitive fitting process as an example.  A complete 
algorithm description for every type of primitives can refer to reference [You, 2003]. 



Based on two user initialized diagonal points, the approach automatically estimates all four corners of the 
cube roof by using a global direction parameter.  Then these initial corner estimates are used to search for edge 
points based on shape connectivity.  Many incorrect edge or noise points will be included if we only use the 
connectivity rule.  To further refine the edge points, a depth filter and a slope filter are employed.  Results 
showed that these two filters are very efficient to find correct edge points.  Least square fitting technique is then 
used to estimate the best parameters for the edges of buildings.  Similar to this edge points segment, surface 
points are also extracted using the depth and slope filters, as well as the parameters being estimated using least 
square fitting approach. 
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Figure 2.  A complex building is modeled using multiple cuboid primitives.  From left to right, original
LiDAR model, refined model, and refined model embedded into original mesh.  
 
Non-Linear Primitive Fitting. Quadric and high order curved surfaces cannot be modeled using the above 

ear primitives.  To handle complex buildings with curved surfaces, non-linear primitives are introduced.  
perquadrics are extensions of non-linear generic quadric surfaces.  They have capability of describing a 
iety of curved shapes with a small number of parameters.  We use the superquadric as a general form to 
del all the nonlinear high-order surfaces.  The Levenberg-Marquardt (LM) method is used to perform the 
ing process.  Three steps comprising the model fitting approach are described as following. 

Object segmentation: the region-growing approach is employed to segment the irregular object from its 
kground.  Given a seed-point, the algorithm automatically segments the seeded region based on a defined 
wing rule.  In our implementation, the surface normal and depth information are used to supervise the 
wing procedure.   
Initial surface fitting: to guarantee a converged optimal solution, an appropriate initial value is required for 

 LM algorithm.  A sphere primitive fitting is used for system initialization.  
High-order surface filling: once initialized, the system fits the ellipsoid primitive to the segmented surface 

ints using LM algorithm.  The algorithm typically needs several hundreds iterations (606 iterations in the 
mple shown in Figure 3) to converge to a correct solution.  Figure 3 shows the result of applying this 
roach to model the Los Angeles Arena. 

igure 3.  High-order primitive is used for modeling Los Angeles Arena: (a) Segmented edge and surface
oints (purple), (b) refined model with the ellipsoid primitive, and (c) the refined model embedded in the
riginal mesh 



3 Integration of aerial and range image for building modeling 

3.1 Image registration 
As mentioned before, 3D modeling can benefit from the integrated using of multiple sensor sources.  These 

different data sources must first be spatially co-registered. The information extracted from one data source 
which is used to help the analysis of another data source can be roughly classified into two types: knowledge-
level information and pixel-level information.  The knowledge-level information is higher-level cue, e.g. a 
region information of building, or color and texture information of imagery. [Huertas, 2000] extracted shape 
cues from ISFAR images, and then used these cues to guide analysis of the EO panchromatic (PAN) images.  
Their results showed that combining different data sources in knowledge-level can significantly reduce the 
computation complexity of fusion algorithm.  The pixel-level information is lower-level, such as edges, 
footprint, and corners.  To use the pixel-level information, the registration error should be less than the 
minimum resolution of data sources.  For example, if the resolution of a LiDAR data is 1 meter, and that of a 
aerial image is 0.5 meter, then the registration error should be less than two pixels.  Otherwise it makes no sense 
to use information such as edges from images to improve the accuracy of LiDAR models. 

 

Figure 4. a) Low quality range image from LIDAR data. b) High resolution aerial 
image 

 
Figure 4 shows a LiDAR range image of Purdue campus, and associated high-resolution aerial image.  The 

resolution of the aerial image is around 4 times higher than that of range image.  To register them, we manually 
selected 12 pair of point correspondences to find the registration transform between the range and aerial images.  
 
3.2 Image based classification 

Our goal of using aerial image is: employing texture and color information from imagery to automate the 
processes of extraction buildings from LiDAR, and using edges extracted from the high-resolution aerial image 
to refine the accuracy of LiDAR models.   

We need to extract buildings from 
background, i.e. classification of the data 
into two sets: building set and terrain set. 
The range image from LiDAR contains 
depth for each point, so it’s naturally to 
use it for data classification.  A simple 
depth filter is used.  Objects below a 
certain height threshold are classified as 
terrain. Otherwise, they must belong either 
to buildings or vegetations.  Figure 5(a) 
shows result of using this simple depth 
filter to classify the range image of Figure 
4.  The dark parts denote terrain, while 
white parts are either buildings or 

Figure 5. (a) Data classification result based on pure depth
information, and (b) refined result of using color information from
image.  



Figure 6.  (a) Detected edges from aerial images, (b) refined edges near one building, and (c) refined edges
near building boundary. 

vegetations. However, it is difficult to further classify the vegetations from the buildings using only the height 
information.  There is a technique pursued by using height texture to tackle this problem [Hans, 1999], however 
it’s difficult to apply for general case, especially when the vegetations are close to buildings.  Our solution to 
this problem is to use color information provided by the imagery source.  We first map the white points 
(indicate building or vegetation in Figure 5) in the range image to the aerial image.  We then classify those 
points if they belong to building or vegetation based on color information.  Currently we are using a RGB color 
classification, i.e. if a point color is green, it is classified to vegetation set, and otherwise it belongs to building 
set.  The refined result is shown in Figure 5 (b) in which the most vegetation areas have been correctly removed.   
 
3.3 Edge extracting from aerial images 

The Canny algorithm is used to extract building edges from aerial image.  The resulted edge map is shown 
in Figure 6 (a).  As we can see that there are too many edge points in the map that make it harder to find correct 
building edges.  So, we use several shape cues extracted from range image to refine the result.  From the 
segmented range image, we obtain region information of buildings.  We use this region cue to filter the edge 
map so that only those edges near building regions are kept.  Figure 6(b) shows the refined edges near a cube 
shape building. Still, the edge number is large that makes the number of matching hypothesis large.  To further 
refine that, we use building boundary information obtained from the range image.  We use this boundary cue to 
filter the edge map so that only those edges near building boundary are kept.  The final result is in Figure 6(c).  
By using these cues from range image, we reduce dramatically the number of edges, hence the number of 
hypotheses of building extraction.    
 
3.4 Hypothesis and modeling 

To extract building shape, we need to group the above detected edges.  General feature grouping is a 
classic, but still open question in computer vision research.  We can however reduce the difficult by first 

 

Figure 7. (a) Edges after applying a link filtering,  (b) Edges after slope filter, and (c) Combined 
edges as hypotheses candidates. 



focusing on a set of certain building shapes such as rectangle.  We use a hypotheses-verification strategy to 
group the building edges.  We first build several hypotheses for the building edges, and then verify them using 
the information provided from the range image.  For rectangular shape, each two pair of parallel edges can form 
a hypothesis.  

The number of possible hypotheses is quadric to the number of edges.  In order to further reduce the 
number of hypotheses, we use several filters to reduce the number of edges.  First we link the edges extracted 
from aerial image in anti-clockwise way.  The edges with lengths less than a threshold is removed (Figure 7(a)).  
Second, since most of the buildings are parallel to each other.  Assuming the global building direction is given, 
we can use a slope filter to further reduce the number of edges (Figure 7(b)).  Finally, edges are combined 
according to geometric proximity.  From the range image, we roughly know the size of building boundary. 
Using the building size as another length filter, we further remove the short combined edges.  The result is 
shown in Figure 7 (c), where the red edges are edges before combination, and white edges are the resulting 
candidate edges for hypothesis formation.   

In the hypothesis formation step, each two pair of parallel edges is selected to form one rectangular 
hypothesis.  In Figure 7(c), for example, there are 5 edges, hence can form 5 rectangle hypotheses (Figure 8(a)). 
To verify the hypothesis, each rectangle is mapped back to the range image (Figure 8b).  The one having 
maximum overlap area with the range image is selected as the building boundary.  As so, we extract the 
building edges from aerial images for building modeling, and extract surface information from LiDAR for 
model fitting.  The two information are then combined to obtain complete model parameters.  The final 
modeling result is shown in Figure 8(c). 

Figure 8.  a) Rectangle hypotheses;  b) Rectangle mapped back to range image; c) Modeling result. 

 
 3.5 Discussion 

Using combined information from LiDAR data and aerial image for building modeling has several 
advantages: a) it improves modeling accuracy.  For example, the resolution of the aerial image we used is 
around 4 times that of the range image.  The edges extracted from aerial image are much more accurate than 
that detected from LiDAR data; b) it helps to automate the modeling process.  For example, in our previous 
system, user is required to select two seed points (two user mouse clicks) to model a cube shape building.  This 
user assistance is automated by using the above approaches; and c) it reduces computation complexity. For 
example, by using the shape cues from the range image we dramatically reduce the number of hypotheses (more 
than 90 percent), hence greatly improve the overall performance. 

However, there are several issues we should pay attention to when combining information from multiple 
sensors. First, the different data sources should be spatially co-registered. For knowledge level information, 
such as cues about building regions, registration precision is not that strict.  For pixel level information, such as 
edges and corners, then pixel level registration is required.  Our work uses both knowledge level and pixel level 
information for modeling, so registration precision is critical. Second, images contain more information than 
LiDAR, such as texture and color. However, this complex information will also make the analysis complex. 
One problem is that there are too many edges, how to extract the correct edge information is difficult. Another 
problem is how to group edges to form hypothesis for complex building shapes lack of general solution.  That’s 
why most currently automatic system can only handle some simple model shapes like rectangles. 

 
 



4 Results and Conclusion 

We have applied to our modeling system to a variety of dataset, and it has demonstrated its flexibility and 
capability for wide range of complex buildings.  Figure 9 shows the results of applying the system to model a 
LiDAR data of Purdue campus.  Due to the lack of actual measurement of the buildings, quantitative evaluation 
of modeling accuracy is not feasible.  We use two methods for evaluation.  The first method is embedding the 
refined model into original LiDAR model (Figure 9(c)).  The second method is using imagery geo-referencing 
to verify the accuracy of the models (Figure 9 (d)).  Both results confirm the accuracy of the proposed modeling 
system. 

dc

ba

Figure 9. Complete models of Purdue dataset. (a) Original LiDAR data, (b) refined models,
(c) refined models embed in original models, and  (d) refined models with aerial image
projection for accuracy verification.

 
This paper presents a modeling system using airborne LiDAR and aerial imagery. Our approach is 

primitive-based technique.  Based on the shape of building rooftop, we classify a complex building section into 
two groups: linear-fitting primitives and high-order surface primitives.  Once a building is segmented, 
geometric primitives are fit to an element’s mesh model data, and the best fitting models represent the complete 
building structure.  To improve accuracy and efficiency, we use image information to aid model and refine 
processes.  Both the knowledge-level and pixel-level information are used.  The texture and color information 
from aerial image is used to automate the segmentation process.  Building shape cues from range image are 
used to reduce the number of model hypotheses and computation complexity. Edges from high resolution aerial 
images are used to improve the model accuracy. We demonstrated the system’s flexibility and capability for 
modeling wide range of complex buildings. 
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